|
Добрый день можно поинтересоваться где брать литературу предложенную в курсе ?Большинство книг я не могу найти в известных источниках |
Система многозначных алфавитов и функций
Основные многозначные алфавиты как подмножества универсального 16-значного алфавита
Наиболее широко применяемый на практике алфавит
образует следующее подмножество алфавита
Рассмотрим пример вычисления функции
в троичном алфавите, используя характеристические функции, приведенные в Табл.7.5.
Пусть
, и
, тогда получаем

Таким образом, согласно кодированию алфавита
(Табл.7.1) код
определяет значение
, что соответствует таблице истинности функции
в троичном алфавите.
Алфавит
, являющийся расширением алфавита E3, определяется следующим подмножеством 16-значного алфавита:

Рассмотрим пример вычисления функции
в 5-значном алфавите, используя характеристические функции, приведенные в Табл.7.5.
Пусть
, и
, тогда получаем

То есть, согласно кодированию алфавита
код
определяет значение
что соответствует таблице истинности функции
в 5-значном алфавите.
На рис.7.2 представлена алгебраическая структура алфавитов
и
В силу построения рассмотренные алфавиты являются частично упорядоченными подмножествами и образуют структуры типа верхняя полурешетка
| Элементы | Интерпретация |
|---|---|
![]() |
Статический
|
![]() |
Статическая
|
![]() |
Переход
|
![]() |
Переход
|
![]() |
Статическое -состязание |
![]() |
Статическое -состязание |
| Элементы | Интерпретация |
|---|---|
![]() |
Статический
|
![]() |
Статическая
|
![]() |
Переход
|
![]() |
Переход
|
![]() |
Статическое -состязание |
![]() |
Статическое -состязание |
![]() |
Динамическое -состязание |
![]() |
Динамическое -состязание |
Отметим, что 6-значный и 8-значный алфавиты
и
соответственно, используемые в методах анализа состязаний сигналов также могут быть получены из алфавита
, так как определяются следующими подмножествами:
При этом, как было показано в разделе 2.9.2, моделирование с анализом на состязания выполняется на трех наборах: текущем основном в алфавите
, на промежуточном наборе: при использовании
- в алфавите
(при использовании
- в алфавите
) следующем основном наборе в алфавите
Такой способ моделирования с использованием трех наборов соответствует математической структуре алфавитов
и
Результаты моделирования интерпретируются в соответствии с таблицами 7.8 и 7.9 соответственно. Отметим, что алфавит
позволяет обнаруживать динамические состязания. В алгоритмах анализа состязаний иногда используется также алфавит
, содержащий все элементы алфавита
и элемент
, соответствующий неопределенному состоянию.
Алфавит
, наиболее широко применяемый в методах генерации тестов (он будет дальше использоваться в лекции является подмножеством 16-значного алфавита:

Рассмотрим пример вычисления функции
в 6-значном алфавите, используя характеристические функции, приведенные в Табл.7.5. Пусть
, и
, тогда получаем

То есть, согласно кодированию алфавита
(Табл.7.1) код
определяет значение
, что соответствует таблице истинности функции
в алфавите 
Широкое применение в методах генерации тестов находит также алфавит
, являющийся подмножеством 16-значного алфавита. Он определяется следующим его подмножеством:

Рассмотрим пример вычисления функции
в 10-значном алфавите, используя характеристические функции, приведенные в Табл.7.5. Пусть
, и
, тогда получаем

Тогда, согласно кодированию алфавита
(Табл.7.1), код
определяет значение
, что соответствует таблице истинности функции
в алфавите
В генерации тестов используется также и 12-значный
алфавит, также являющиеся расширением алфавита 
Из выше сказанного можно сделать заключение, что при методе кодирования, используемом в алфавите
, описание поведения многозначных функций с помощью упорядоченного множества характеристических функций
может быть использовано в методах генерации тестов и моделирования логических схем, базирующихся на применении основных многозначных алфавитов. С этой точки зрения описанная 16-значная логика
является универсальной математической моделью для методов генерации тестов и моделирования.
Алгебраическая структура многозначных алфавитов
Показано, что рассмотренный 16-значный алфавит
образует булеву алгебру, представленную на Рис.7.1. Используемый метод построения позволяет утверждать, что основные многозначные алфавиты, применяемые в методах генерации проверяющих тестов и моделирования ДУ, являются частично упорядоченными подмножествами
Так, например, алфавиты
и
образуют структуры типа верхняя полурешетка, которые не содержат наименьший элемент. Эти структуры представлены на рис.7.2а и рис.7.2б. Если к алфавиту
добавить наименьший элемент
, то получим алфавит
, также представленный на рис.7.2в, который используется при моделировании шинных структур. Знание алгебраической структуры основных многозначных алфавитов позволяет строить с помощью алгебраических операций новые алфавиты, необходимые при моделировании или генерации тестов схем, выполненных по какой либо новой технологии. Например, на рис.7.2г, рис.7.2д представлены алфавиты
и
, которые получены из алфавита
и широко используются при моделировании шинных структур.











