Здравствуйте! 4 июня я записалась на курс Прикладная статистика. Заплатила за получение сертификата. Изучала лекции, прошла Тест 1. Сегодня вижу, что я вне курса! Почему так произошло? |
Различные виды статистических данных
1.4. Нечеткие множества - частный случай нечисловых данных
Нечеткие множества. Пусть - некоторое множество. Подмножество множества может быть задано своей характеристической функцией
( 1) |
Что такое нечеткое множество? Обычно говорят, что нечеткое подмножество множества характеризуется своей функцией принадлежности . Значение функции принадлежности в точке показывает степень принадлежности этой точки нечеткому множеству. Нечеткое множество описывает неопределенность, соответствующую точке х - она одновременно и входит, и не входит в нечеткое множество . За вхождение - шансов, за второе - шансов.
Если функция принадлежности имеет вид (1) при некотором , то есть обычное (четкое) подмножество . Таким образом, теория нечетких множество является не менее общей математической дисциплиной, чем обычная теория множеств, поскольку обычные множества - частный случай нечетких. Соответственно можно ожидать, что теория нечеткости, как целое, обобщает классическую математику. Однако позже мы увидим, что теория нечеткости в определенном смысле сводится к теории случайных множеств и тем самым является частью классической математики. Другими словами, по степени общности обычная математика и нечеткая математика эквивалентны. Однако для практического применения, например, в теории принятия решений описание и анализ неопределенностей с помощью теории нечетких множеств весьма плодотворны.
Обычное подмножество можно было бы отождествить с его характеристической функцией. Этого математики не делают, поскольку для задания функции (в ныне принятом подходе) необходимо сначала задать множество. Нечеткое же подмножество с формальной точки зрения можно отождествить с его функцией принадлежности. Однако термин "нечеткое подмножество" предпочтительнее при построении математических моделей реальных явлений.
Теория нечеткости является обобщением интервальной математики. Действительно, функция принадлежности
задает интервальную неопределенность - про рассматриваемую величину известно лишь, что она лежит в заданном интервале . Тем самым описание неопределенностей с помощью нечетких множеств является более общим, чем с помощью интервалов.
Начало современной теории нечеткости положено в 1965 г. работой американского ученого азербайджанского происхождения Л.А. Заде. К настоящему времени по этой теории опубликованы тысячи книг и статей, издается несколько международных журналов, выполнено достаточно много как теоретических, так и прикладных работ. Первая книга российского автора по теории нечеткости вышла в 1980 г. [ [ 1.16 ] ].
Л.А. Заде рассматривал теорию нечетких множеств как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от "принадлежности" к "непринадлежности" не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении предприятиями, качеством продукции и технологическими процессами, при описании предпочтений потребителей и варки стали.
Л.А. Заде использовал термин "fuzzy set" (нечеткое множество). На русский язык термин "fuzzy" переводили как нечеткий, размытый, расплывчатый, и даже как пушистый и туманный.
Аппарат теории нечеткости громоздок. В качестве примера дадим определения теоретико-множественных операций над нечеткими множествами. Пусть и - два нечетких подмножества с функциями принадлежности и соответственно. Пересечением , произведением , объединением , отрицанием , суммой называются нечеткие подмножества с функциями принадлежности
соответственно.
Как уже отмечалось, теория нечетких множеств в определенном смысле сводится к теории вероятностей, а именно, к теории случайных множеств. Соответствующий цикл теорем приведен ниже в "Теоретическая база прикладной статистики" . Однако при решении прикладных задач вероятностно-статистические методы и методы теории нечеткости обычно рассматриваются как различные.
Для знакомства со спецификой нечетких множеств рассмотрим некоторые их свойства.
В дальнейшем считаем, что все рассматриваемые нечеткие множества являются подмножествами одного и того же множества .
Законы де Моргана для нечетких множеств. Как известно, законами де Моргана называются следующие тождества алгебры множеств
( 2) |
Теорема 1. Для нечетких множеств справедливы тождества
( 3) |
( 4) |
Доказательство теоремы 1 состоит в непосредственной проверке справедливости соотношений (3) и (4) путем вычисления значений функций принадлежности участвующих в этих соотношениях нечетких множеств на основе определений, данных выше.
Тождества (3) и (4) назовем законами де Моргана для нечетких множеств. В отличие от классического случая соотношений (2), они состоят из четырех тождеств, одна пара которых относится к операциям объединения и пересечения, а вторая - к операциям произведения и суммы. Как и соотношение (2) в алгебре множеств, законы де Моргана в алгебре нечетких множеств позволяют преобразовывать выражения и формулы, в состав которых входят операции отрицания.
Дистрибутивный закон для нечетких множеств. Некоторые свойства операций над множествами не выполнены для нечетких множеств. Так, за исключением случая, когда - "четкое" множество (т.е. функция принадлежности принимает только значения 0 и 1).
Верен ли дистрибутивный закон для нечетких множеств? В литературе иногда расплывчато утверждается, что "не всегда". Внесем полную ясность.
Теорема 2. Для любых нечетких множеств , и
( 5) |
( 6) |
справедливо тогда и только тогда, когда при всех
Доказательство. Фиксируем произвольный элемент . Для сокращения записи обозначим Для доказательства тождества (5) необходимо показать, что
( 7) |
Рассмотрим различные упорядочения трех чисел . Пусть сначала . Тогда левая часть соотношения (7) есть , а правая , т.е. равенство (7) справедливо.
Пусть . Тогда в соотношении (7) слева стоит , а справа , т.е. соотношение (7) опять является равенством.
Если , то в соотношении (7) слева стоит , а справа , т.е. обе части снова совпадают.
Три остальные упорядочения чисел разбирать нет необходимости, поскольку в соотношение (6) числа и входят симметрично. Тождество (5) доказано.
Второе утверждение теоремы 2 вытекает из того, что в соответствии с определениями операций над нечеткими множествами
и
Эти два выражения совпадают тогда и только тогда, когда , что и требовалось доказать.
Определение 1. Носителем нечеткого множества называется совокупность всех точек , для которых .
Следствие теоремы 2. Если носители нечетких множеств и совпадают с , то равенство (6) имеет место тогда и только тогда, когда - "четкое" (т.е. обычное, классическое, не нечеткое) множество.
Доказательство. По условию при всех . Тогда из теоремы 2 следует, что , т.е. или , что и означает, что - четкое множество.
Пример описания неопределенности с помощью нечеткого множества. Понятие "богатый" часто используется при обсуждении социально-экономических проблем, в том числе и в связи с подготовкой и принятием решений. Однако очевидно, что разные лица вкладывают в это понятие различное содержание. Сотрудники Института высоких статистических технологий и эконометрики провели в 2004 г. небольшое пилотное социологическое исследование представления различных слоев населения о понятии "богатый человек".
Мини-анкета опроса выглядела так:
- При каком месячном доходе (в тыс. руб. на одного человека) Вы считали бы себя богатым человеком?
- Оценив свой сегодняшний доход, к какой из категорий Вы себя относите:
a) богатые;
б) достаток выше среднего;
в) достаток ниже среднего;
г) бедные;
д) за чертой бедности.
(В дальнейшем вместо полного наименования категорий будем оперировать буквами, например "в" - категория, "б" - категория и т.д.) - Ваша профессия, специальность.