Опубликован: 09.11.2009 | Доступ: свободный | Студентов: 4093 / 1040 | Оценка: 4.66 / 4.45 | Длительность: 54:13:00
Специальности: Экономист
Лекция 13:

Точки роста

< Лекция 12 || Лекция 13: 12 || Лекция 14 >
Аннотация: Лекция посвящена размышлению о тех направлениях прикладной статистики, которые представляются перспективными в будущем: робастность, бутстреп, статистика интервальных данных и др.

Отечественная литература по прикладной статистике столь же необозрима, как и мировая. Только в секции "Математические методы исследования" журнала "Заводская лаборатория" с 1960-х годов опубликовано более 1000 статей. Не будем даже пытаться перечислять коллективы исследователей или основные монографии в этой области. Отметим только одно издание. По нашему мнению, наилучшей отечественной книгой по прикладной статистике является сборник статистических таблиц Л.Н. Большева и Н.В. Смирнова [ [ 13.3 ] ] с подробными комментариями, играющими роль сжатого учебника и справочника.

Выделим и обсудим "точки роста" прикладной статистики, те их направления, которые представляются перспективными в будущем, в XXI веке, но пока в большинстве учебных изданий отодвинуты на задний план традиционными постановками.

При описании современного этапа развития статистических методов целесообразно выделить пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика (т.е. непараметрическая статистика), робастность, бутстреп, статистика интервальных данных, статистика нечисловых данных (в несколько иной терминологии - статистика объектов нечисловой природы). Обсудим их.

Непараметрическая статистика. В первой трети ХХ в., одновременно с параметрической статистикой, в работах Спирмена и Кендалла появились первые непараметрические методы, основанные на коэффициентах ранговой корреляции, носящих ныне имена этих статистиков. Но непараметрика, не делающая нереалистических предположений о том, что функции распределения результатов наблюдений принадлежат тем или иным параметрическим семействам распределений, стала заметной частью статистики лишь со второй трети ХХ века. В 30-е годы появились работы А.Н. Колмогорова и Н.В. Смирнова, предложивших и изучивших статистические критерии, носящие в настоящее время их имена. Эти критерии основаны на использовании так называемого эмпирического процесса. (Как известно, эмпирический процесс - это разность между эмпирической и теоретической функциями распределения, умноженная на квадратный корень из объема выборки.) В работе А.Н. Колмогорова 1933 г. изучено предельное распределение супремума модуля эмпирического процесса, называемого сейчас критерием Колмогорова. Затем Н.В. Смирнов исследовал супремум и инфимум эмпирического процесса, а также интеграл (по теоретической функции распределения) квадрата эмпирического процесса.

Следует отметить, что встречающееся иногда в литературе словосочетание "критерий Колмогорова-Смирнова" некорректно, поскольку эти два статистика никогда не печатались вместе и не изучали один и тот же критерий схожими методами. Корректно сочетание "критерий типа Колмогорова-Смирнова", применяемое для обозначения критериев, основанных на использовании супремума функций от эмпирических процессов [ [ 13.37 ] ].

После Второй мировой войны развитие непараметрической статистики пошло быстрыми темпами. Большую роль сыграли работы американского статистика Ф. Вилкоксона и его школы. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг статистических задач, что и с помощью параметрических. Однако для обеспечения широкого внедрения непараметрических методов необходимо провести еще целый комплекс теоретических и пилотных (т.е. пробных) прикладных работ. Все большую роль играют непараметрические оценки плотности, непараметрические методы регрессии и распознавания образов (дискриминантного анализа). В нашей стране непараметрические методы получили достаточно большую известность после выхода в 1965 г. первого издания упомянутого выше сборника статистических таблиц Л.Н. Большева и Н.В. Смирнова [ [ 13.3 ] ], содержащего подробные таблицы для основных непараметрических критериев.

Тем не менее параметрические методы всё еще популярнее непараметрических, особенно среди тех прикладников, кто слабо знаком со статистическими методами. Неоднократно публиковались экспериментальные данные, свидетельствующие о том, что распределения реально наблюдаемых случайных величин, в частности, ошибок измерения, в подавляющем большинстве случаев отличны от нормальных (гауссовских). Тем не менее теоретики продолжают строить и изучать статистические модели, основанные на гауссовости, а практики - применять подобные методы и модели. Другими словами, "ищут под фонарем, а не там, где потеряли".

Устойчивость статистических процедур (робастность). Если в параметрических постановках на вероятностные модели статистических данных накладываются слишком жесткие требования - их функции распределения должны принадлежать определенному параметрическому семейству, то в непараметрических, наоборот, излишне слабые - требуется лишь, чтобы функции распределения были непрерывны. При этом игнорируется априорная информация о том, каков "примерный вид" распределения. Априори можно ожидать, что учет этого "примерного вида" улучшит показатели качества статистических процедур. Развитием этой идеи является теория устойчивости (робастности) статистических процедур, в которой предполагается, что распределение исходных данных мало отличается от некоторого параметрического семейства. За рубежом эту теорию разрабатывали П. Хубер, Ф. Хампель и многие другие. Из монографий на русском языке, трактующих о робастности и устойчивости статистических процедур, самой ранней и наиболее общей была [ [ 1.15 ] ], следующей - [ [ 13.43 ] ]. Частными случаями реализации идеи робастности (устойчивости) статистических процедур являются статистика объектов нечисловой природы и статистика интервальных данных.

Имеется большое разнообразие моделей робастности в зависимости от того, какие именно отклонения от заданного параметрического семейства допускаются. Среди теоретиков наиболее популярной оказалась модель выбросов, в которой исходная выборка "засоряется" малым числом "выбросов", имеющих принципиально иное распределение. Однако эта модель представляется "тупиковой", поскольку в большинстве случаев большие выбросы либо невозможны из-за ограниченности шкалы прибора либо интервала изменения измеряемой величины, либо от них можно избавиться, применяя лишь статистики, построенные по центральной части вариационного ряда. Кроме того, в подобных моделях обычно считается известной частота засорения, что в сочетании со сказанным выше делает их малопригодными для практического использования.

Более перспективным представляется, например, модель малых отклонений распределений, в которой расстояние между распределением каждого элемента выборки и базовым распределением не превосходит заданной малой величины, и модель статистики интервальных данных.

Бутстреп (размножение выборок). Другое из упомянутых выше направлений - бутстреп - связано с интенсивным использованием возможностей компьютеров. Основная идея состоит в том, чтобы теоретическое исследование заменить вычислительным экспериментом. Например, вместо описания выборки распределением из параметрического семейства строим большое число "похожих" выборок, т.е. "размножаем" выборку. Затем вместо оценивания характеристик (и параметров) и проверки гипотез на основе свойств теоретического распределения решаем эти задачи вычислительным методом, рассчитывая интересующие нас статистики по каждой из "похожих" выборок и анализируя полученные при этом распределения. Например, вместо того, чтобы теоретическим путем находить распределение статистики, доверительные интервалы и другие характеристики, моделируют большое число выборок, похожих на исходную, затем рассчитывают соответствующие значения интересующей исследователя статистики и изучают их эмпирическое распределение. Квантили этого распределения задают доверительные интервалы и т.д.

Термин "бутстреп" мгновенно получил широкую известность после первой же статьи Б.Эфрона 1979 г. по этой тематике. Он сразу же стал обсуждаться в массе публикаций, в том числе и научно-популярных. В журнале "Заводская лаборатория" (№ 10, 1987) г. была помещена подборка статей по бутстрепу. На русском языке выпущен сборник статей Б. Эфрона [ [ 13.49 ] ]. Основная идея бутстрепа по Б. Эфрону состоит в том, что методом Монте-Карло (статистических испытаний) многократно извлекаются выборки из эмпирического распределения. Эти выборки, естественно, являются вариантами исходной, напоминают ее.

Сама по себе идея "размножения выборок" была известна гораздо раньше. Одна из статей Б. Эфрона в сборнике [ [ 13.49 ] ] называется так: "Бутстреп-методы: новый взгляд на метод складного ножа". Упомянутый "метод складного ножа" (jackknife) предложен М. Кенуем еще в 1949 г., за 30 лет до появления статьи Б.Эфрона. "Размножение выборок" при этом осуществляется путем исключения одного наблюдения. Таким путем для выборки объема n получаем n "похожих" на нее выборок объема (n - 1) каждая. Если же исключать по 2 наблюдения, то число "похожих" выборок возрастает до n(n - 1)/2 объема (n - 2) каждая.

Преимущества и недостатки бутстрепа как статистического метода в сравнении с рядом аналогичных методов обсуждаются ниже. Необходимо подчеркнуть, что бутстреп по Эфрону - лишь один из вариантов методов "размножения выборки" ( resampling ), и, на наш взгляд, не самый удачный. Метод "складного ножа" представляется более полезным. На его основе можно сформулировать следующую простую практическую рекомендацию.

Предположим, что Вы по выборке делаете какие-либо статистические выводы. Вы хотите узнать также, насколько эти выводы устойчивы. Если у Вас есть другие (контрольные) выборки, описывающие то же явление, то Вы можете применить к ним ту же статистическую процедуру и сравнить результаты. А если таких выборок нет? Тогда Вы можете их построить искусственно. Берете исходную выборку и исключаете один элемент. Получаете похожую выборку (она взята из того же распределения, только объем на единицу меньше). Затем возвращаете этот элемент выборки и исключаете другой. Получаете вторую похожую выборку. Поступая таким образом со всеми элементами исходной выборки, получаете столько выборок, похожих на исходную, каков ее объем. Остается обработать их тем же способом, что и исходную, и изучить устойчивость получаемых выводов - разброс оценок параметров, частоты принятия или отклонения гипотез и т.д.

Можно изменять не выборку, а сами данные. Поскольку всегда имеются погрешности измерения, то реальные данные - это не числа, а интервалы (результат измерения плюс-минус погрешность). Нужна статистическая теория анализа таких данных.

Статистика интервальных данных. Перспективное и быстро развивающееся направление последних лет - статистика интервальных данных. Речь идет о развитии методов прикладной математической статистики в ситуации, когда статистические данные - не числа, а интервалы, в частности, порожденные наложением ошибок измерения на значения случайных величин.

Статистика интервальных данных идейно связана с интервальной математикой, в которой в роли чисел выступают интервалы. Это направление математики является дальнейшим развитием известных правил приближенных вычислений, посвященных выражению погрешностей суммы, разности, произведения, частного через погрешности тех чисел, над которыми осуществляются перечисленные операции. К настоящему времени удалось решить, в частности, ряд задач теории интервальных дифференциальных уравнений, в которых коэффициенты, начальные условия и решения описываются с помощью интервалов.

Одна из ведущих научных школ в области статистики интервальных данных - это школа проф. А.П. Вощинина, активно работающая с конца 70-х годов. В частности, ее представителями изучены проблемы регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности.

Рассмотрим другое направление в статистике интервальных данных, которое также представляется перспективным. В нем развиваются асимптотические методы статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. В частности, с помощью такой асимптотики в начале 1980-х годов были сформулированы правила выбора метода оценивания параметров гамма-распределения в ГОСТ 11.011-83 [ [ 12.12 ] ].

В рамках рассматриваемого научного направления разработана общая схема исследования, включающая расчет нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания). Она применена к оцениванию математического ожидания, дисперсии, коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, при проверке гипотез о параметрах нормального распределения, в том числе с помощью критерия Стьюдента, а также гипотезы однородности с помощью критерия Смирнова. Также были разработаны подходы к использованию интервальных данных в основных постановках регрессионного, дискриминантного и кластерного анализов. В частности, изучено влияние погрешностей измерений и наблюдений на свойства алгоритмов регрессионного анализа, разработаны способы расчета нотн и рациональных объемов выборок, введены и исследованы новые понятия многомерных и асимптотических нотн, доказаны соответствующие предельные теоремы. Кроме того, начата разработка интервального дискриминантного анализа, в частности, рассмотрено влияние интервальности данных на введенный в "Многомерный статистический анализ" показатель качества классификации. Изучено асимптотическое поведение оценок метода моментов и оценок максимального правдоподобия (а также более общих оценок минимального контраста), проведено асимптотическое сравнение этих методов в случае интервальных данных. Найдены общие условия, при которых, в отличие от классической математической статистики, метод моментов дает более точные оценки, чем метод максимального правдоподобия ( "Статистика интервальных данных" ).

В области асимптотической статистики интервальных данных российская наука имеет мировой приоритет. Во все виды статистического программного обеспечения включают алгоритмы интервальной статистики, "параллельные" обычно используемым алгоритмам прикладной математической статистики. Это позволяет в явном виде учесть наличие погрешностей у результатов наблюдений.

< Лекция 12 || Лекция 13: 12 || Лекция 14 >
Анастасия Маркова
Анастасия Маркова

Здравствуйте!

4 июня я записалась на курс Прикладная статистика. Заплатила за получение сертификата. Изучала лекции, прошла Тест 1.

Сегодня вижу, что я вне курса! Почему так произошло?