Здравствуйте! 4 июня я записалась на курс Прикладная статистика. Заплатила за получение сертификата. Изучала лекции, прошла Тест 1. Сегодня вижу, что я вне курса! Почему так произошло? |
Теоретическая база прикладной статистики
4.5. Принцип инвариантности
Пусть - независимые одинаково распределенные случайные величины с непрерывной функцией распределения . Многие используемые в прикладной статистике функции от результатов наблюдений выражаются через эмпирическую функцию распределения . К ним относятся статистики Колмогорова, Смирнова, омега-квадрат. Отметим, что и другие статистики выражаются через эмпирическую функцию распределения, например:
Полезным является преобразование Н.В.Смирнова . Тогда независимые случайные величины , имеют равномерное распределение на отрезке [0; 1]. Рассмотрим построенную по ним эмпирическую функцию распределения . Эмпирическим процессом называется случайный процесс
Рассмотрим критерии проверки согласия функции распределения выборки с фиксированной функцией распределения . Статистика критерия Колмогорова записывается в виде
статистика критерия Смирнова - это а статистика критерия омега-квадрат (Крамера-Мизеса-Смирнова) имеет видСлучайный процесс имеет нулевое математическое ожидание и ковариационную функцию . Рассмотрим гауссовский случайный процесс с такими же математическим ожиданием и ковариационной функцией. Он называется броуновским мостом. (Напомним, что гауссовским процесс именуется потому, что вектор имеет многомерное нормальное распределение при любых наборах моментов времени .)
Пусть - функционал, определенный на множестве возможных траекторий случайных процессов. Принцип инвариантности [ [ 4.4 ] ] состоит в том, что последовательность распределений случайных величин сходится при к распределению случайной величины . Сходимость по распределению обозначим символом . Тогда принцип инвариантности кратко записывается так: . В частности, согласно принципу инвариантности статистика Колмогорова и статистика омега квадрат сходятся по распределению к распределениям соответствующих функционалов от случайного процесса :
Таким образом, от проблем прикладной статистики сделан переход к теории случайных процессов. Методами этой теории найдены распределения случайных величин
Принцип инвариантности - инструмент получения предельных распределений функций от результатов наблюдений, используемых в прикладной статистике.
Обоснование принципу инвариантности может быть дано на основе теории сходимости вероятностных мер в функциональных пространствах [ [ 4.1 ] ]. Более простой подход, позволяющий к тому же получать необходимые и достаточные условия в предельной теории статистик интегрального типа (принцип инвариантности к ним нельзя применить), рассмотрен в "Проверка гипотез" .
Почему "принцип инвариантности" так назван? Обратим внимание, что предельные распределения рассматриваемых статистик не зависят от их функции распределения . Другими словами, предельное распределение инвариантно относительно выбора .
В более широком смысле термин "принцип инвариантности" применяют тогда, когда предельное распределение не зависит от тех или иных характеристик исходных распределений [ [ 4.4 ] ]. В этом смысле наиболее известный "принцип инвариантности" - это центральная предельная теорема, поскольку предельное стандартное нормальное распределение - одно и то же для всех возможных распределений независимых одинаково распределенных слагаемых (лишь бы слагаемые имели конечные математическое ожидание и дисперсию).