Опубликован: 26.09.2006 | Доступ: свободный | Студентов: 1815 / 507 | Оценка: 4.25 / 4.12 | Длительность: 17:09:00
ISBN: 978-5-9556-0066-6
Специальности: Программист, Математик
Лекция 1:

Вводная

Лекция 1: 123 || Лекция 2 >

При разработке алгоритма для компьютерного решения той или иной задачи необходимая информация формализуется в виде набора элементов различных типов. В каждой системе программирования предусмотрено использование некоторых примитивных типов данных и средств, с помощью которых можно группировать их в более сложные структуры. Будем считать примитивными следующие типы: булевский, целый, вещественный и символьный. Многие системы программирования позволяют группировать данные примитивных типов в массивы однотипных элементов, записи из фиксированного числа элементов разных типов и в некоторые другие структуры. Вообще, под типом данных понимают произвольное множество, называемое множеством значений, и набор операций над значениями. Так, значениями целого типа являются целые числа из некоторого диапазона, зависящего от системы программирования, а операциями — обычные арифметические операции.

При алгоритмизации задач, решение которых опирается на использование математических знаний и требует математических доказательств, разработка алгоритма часто проводится также в математических или формализованных прикладных терминах. При этом в достаточно большой степени происходит отвлечение от технических возможностей исполнителя алгоритмов (человека или технического устройства). Так, если при описании алгоритма используется понятие множества, то достаточно уметь выполнять некоторый набор операций с множествами и отвечать на некоторые вопросы относительно множеств. Перечень таких операций может быть следующим:

  • ввести в рассмотрение пустое множество;
  • включить элемент в множество;
  • исключить элемент из множества;
  • проверить, пусто ли рассматриваемое множество;
  • узнать, сколько элементов в рассматриваемом множестве.

Эти операции можно считать элементарными и до известной поры не думать о способе их реализации исполнителем. В таких случаях говорят, что мы имеем дело с абстрактным типом данных.

Широко используемыми абстрактными типами данных наряду с множествами являются мультимножества, взвешенные множества, кортежи, отображения, приоритетные очереди, графы и так далее. Когда дело доходит до разработки программ в конкретной системе программирования, приходится принимать решения о представлении таких данных в памяти и о реализации операций с ними доступными средствами.

В настоящее время большинство алгоритмов проектируется для использования в устройствах, обладающих адресуемой памятью. Каждый элемент информации, размещенный в такой памяти, занимает определенную позицию. По известной позиции элемента в такой памяти доступ к нему осуществляется за некоторую условную единицу времени, зависящую только от типа получаемой информации, фактически — от физического размера ячейки памяти или от количества таких ячеек, предназначенных для ее хранения, но не от ее конкретного содержания. Более того, позиции элементов сами могут быть элементами информации, с которыми могут производиться некоторые операции, что позволяет использовать так называемую косвенную адресацию. Наличие косвенной адресации позволяет поручить программной системе или разрабатываемой прикладной программе поиск свободных участков памяти для размещения новых элементов информации и запоминание их адресов с последующим использованием для доступа к информации.

Информация, размещенная в адресуемой памяти, приобретает новые свойства. Элемент информации характеризуется не только своим содержанием, но и адресом, то есть местом расположения в памяти. Два элемента данных, соседних в содержательном смысле, не обязательно будут располагаться в соседних ячейках памяти. Они могут оказаться в "непредвиденных" местах. Проектируя программную реализацию алгоритма, необходимо проектировать и способ расположения в памяти обрабатываемой информации.

Существуют типы данных, которые естественным образом вкладываются в адресуемую структуру технической памяти, причем легко выполняются все операции, предусмотренные для такого типа данных. Примером может служить вектор фиксированной размерности, задаваемый упорядоченным набором своих компонент. Наиболее естественным является его хранение в виде массива, при котором соседние компоненты располагаются в ячейках с идущими подряд номерами. Этот способ позволяет легко выполнять покомпонентные операции (сложение векторов, вычисление скалярного произведения и другие). Однако если размерность вектора в процессе работы изменяется, например путем удаления компонент или вставки новых, то представление в виде массива оказывается неудобным, так как операции удаления и вставки при условии сохранения порядка следования элементов требуют перезаписи, возможно, достаточно большого числа компонент, что может неблагоприятно сказаться на эффективности алгоритма. Чтобы избежать такой ситуации, одновременно с алгоритмом проектируют структуру представления данных, позволяющую реализовать выполнение всех необходимых операций в приемлемое время.

В практике программирования накоплен большой опыт структурирования информации. К счастью, способы структурирования, изобретенные при решении одной задачи, часто находят применение и во многих других. Например, для представления кортежей и множеств в памяти компьютера могут использоваться такие структуры данных, как линейные и циклические списки.

Во многих задачах исходные данные представляют собой так называемые взвешенные множества. Взвешенным называется множество, каждому элементу которого поставлено в соответствие в качестве веса некоторое число. Часто используемыми операциями с такими множествами являются поиск элемента с минимальным весом, вставка нового элемента со своим весом, удаление элемента и некоторые другие. Для быстрого выполнения таких операций разработаны так называемые кучеобразные структуры данных.

Лекция 1: 123 || Лекция 2 >
Антон Сиротинкин
Антон Сиротинкин

на стр 6, лекции 3, Очевидно "Ck <= модуль(Gk(е))*b(k+1)" (1) - , подскажите что значит "модуль" и почему это очевидно...