Определители и их свойства
Определители малых порядков
Рассматривая систему линейных уравнений

для вычисления x1 умножим первое уравнение на a22, второе уравнение на -a12 и сложим их. Получим (a11a22-a12a21)x1=b1a22-b2a12.
Аналогично, для вычисления x2 умножим первое уравнение на -a21, второе уравнение на a11 и сложим их. Получим (a11a22-a12a21)x2=a11b2-a21b1.
Если мы определителем -матрицы

назовем число

то в этом частном случае мы получим следующее утверждение (правило Крамера для n=2 ): если определитель квадратной системы отличен от нуля, т. е.

то система является определенной и для ее единственного решения справедливы формулы

Непосредственная проверка показывает, что (x1,x2) - решение.
Упражнение 6.1.1. Проделать аналогичную процедуру в случае n=3.
Замечание 6.1.2. Очевидно, что определители второго порядка обладают следующими свойствами:
![\begin{alignat*}{2} & 1) &\quad &\begin{vmatrix}
1 & 0\\
0 & 1
\end{vmatrix} = 1;
\\[0.5\baselineskip] & 2) &&\begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}
\end{vmatrix} =
- \begin{vmatrix}
a_{21} & a_{22}\\
a_{11} & a_{12}
\end{vmatrix};
\\[0.5\baselineskip] & 3) &&\begin{vmatrix}
ca_{11} & ca_{12}\\
a_{21} & a_{22}
\end{vmatrix} =
c \begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}
\end{vmatrix},
\intertext{аналогично для второй строки;} & 4) && \text{если }
(a_{11},a_{12}) = (b_1,b_2)+(c_1,c_2),
\text{ то}
\\
&&& \begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}
\end{vmatrix} =
\begin{vmatrix}
b_1 & b_2\\
a_{21} & a_{22}
\end{vmatrix} +
\begin{vmatrix}
c_1 & c_2\\
a_{21} & a_{22}
\end{vmatrix},
\intertext{аналогично для второй строки;} & 5) &&
\begin{vmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}
\end{vmatrix} =
\begin{vmatrix}
a_{11} & a_{21}\\
a_{12} & a_{22}
\end{vmatrix}.
\end{alignat*}](/sites/default/files/tex_cache/ab444ef3e501248a0a9105e39ed64c47.png)
Наша ближайшая цель - построить общую теорию определителей квадратных -матриц и привести многочисленные приложения определителей, в частности в системах линейных уравнений.
Отметим, что на начальном периоде теория определителей формировалась параллельно с аксиоматической теорией площадей и объемов. Например, в декартовой системе координат на плоскости определитель

Определители квадратных n x n -матриц
Пусть



При n=1 : .
При n=2 мы имеем



С этой "подсказкой" определим определитель квадратной матрицы A как










Упражнение 6.2.1. Если n=3, , то

Мнемоническое правило: три произведения
входят со знаком + ; три произведениявходят со знаком -.
Упражнение 6.2.2. При n=3, в декартовой системе координат в R3 определитель |A| матрицы A равен ориентированному объему параллелепипеда, построенного на векторах (a11,a12,a13), (a21,a22,a23) и (a31,a32,a33).
Упражнение 6.2.3. Если , то все шесть слагаемых в разложении определителя третьего порядка |A| одновременно не могут быть положительны.