Опубликован: 26.05.2010 | Доступ: свободный | Студентов: 1604 / 257 | Оценка: 4.42 / 4.25 | Длительность: 56:51:00
ISBN: 978-5-9963-0124-9
Специальности: Разработчик аппаратуры
Лекция 2:

Виды механических сенсоров. Представление о микросистемных технологиях. Деформационные сенсоры

< Лекция 1 || Лекция 2: 12345 || Лекция 3 >

2.4. Деформационные интеллектуальные сенсоры

При применении микросистемных технологий из всех выше перечисленных деформационных элементов проще всего реализовать мембраны. Им обычно и отдают предпочтение. Непосредственно в кремниевой мембране формируют и кремниевые тензорезисторы, которые преобразуют механическую деформацию в электрические сигналы. Рядом с миниатюрной мембраной в том же кристалле кремния формируют также и микросхемы, требуемые для считывания и электронной обработки сигналов.

Таким образом создают, например, миниатюрные датчики давления воздуха в автомобильных шинах ( рис. 2.7 слева). Их размещают внутри каждой шины возле её штуцера так, чтобы они не мешали эксплуатации шин, их вращению, монтажу, демонтажу, балансированию. Информация из сенсоров передается в центральный блок индикации и сигнализации ( рис. 2.7 справа) бесконтактным способом с применением локальной микроволновой радиосвязи. О ней мы расскажем в разделе "Электромагнитные сенсоры".

Система контроля давления и температуры в шинах автомобилей. Слева – микроэлектронный сенсор давления и температуры воздуха в автомобильных шинах. Масса 32 г. Срок службы батареи 5 лет. Справа – центральный блок индикации и сигнализации

Рис. 2.7. Система контроля давления и температуры в шинах автомобилей. Слева – микроэлектронный сенсор давления и температуры воздуха в автомобильных шинах. Масса 32 г. Срок службы батареи 5 лет. Справа – центральный блок индикации и сигнализации

Каждый датчик имеет свой индивидуальный код, поэтому от каждого из них независимо принимается своя информация. Центральный блок с микрокомпьютером размещается в кабине водителя и является интеллектуальной частью сенсора. На его индикаторе показан условный вид автомобиля сверху с расположением всех шин и отображаются измеренные значения температуры и давления в каждой шине.

Требуемая периодичность и порядок проверки, желательные единицы измерения температуры и давления (градусы Цельсия или Фаренгейта, единицы давления) и критические значения параметров задает пользователь. В случае выхода контролируемых параметров за заданные безопасные пределы выдается световая и звуковая сигнализация.

Использование таких интеллектуальных сенсоров оказалось настолько эффективным и важным для повышения безопасности движения грузового автотранспорта, что в США, например, принято решение о том, чтобы до конца 2008 г. все автомобили массой свыше 4,5 т обязательно были оборудованы системами мониторинга давления в шинах. Такие же правила, скорей всего, со временем будут введены и в других странах мира.

Следующим примером компактного портативного интеллектуального сенсора с деформационными чувствительными элементами, изготовленными с применением МСТ, может быть и прецизионный цифровой манометр давления DPI 740, показанный на рис. 2.8 и рассчитанный на применение как в лабораторных, так и в полевых условиях. С его помощью можно измерять атмосферное давление от 0,75 бар до 1,25 бар и абсолютное давление любого химически не агрессивного газа в диапазонах от 3 кПа до 130 кПа, до 250 кПа и до 360 кПа.

Портативный прецизионный цифровой манометр давления DPI 740. Размер 190х90х36 мм, масса 0,5 кг. Диапазон рабочих температур от –10  С до +50  С. Класс точности 0,02%. Долговременная стабильность 0,01% за год

Рис. 2.8. Портативный прецизионный цифровой манометр давления DPI 740. Размер 190х90х36 мм, масса 0,5 кг. Диапазон рабочих температур от –10 С до +50 С. Класс точности 0,02%. Долговременная стабильность 0,01% за год

Высокая точность и стабильность показаний позволили применять его в качестве образцового барометра (вторичного эталона). Наличие микропроцессора сделало возможными автоматический учет влияния температуры, пересчет и высвечивание измеренного значения давления в любых единицах (Па, кПа, гПа, МПа, мм рт. ст., мм вод. ст., кГс/см2, бар и т.п. – всего 24 возможности) и в соответствии с любым избранным пользователем шаблоном, пересчет измеренного атмосферного давления в высоту над уровнем моря и т.п.

Результаты измерений с фиксацией даты и времени запоминаются; могут быть вычислены максимальное и минимальное значения давления за любой указанный период. Через интерфейс RS232 сенсор можно соединить с компьютером или с сетью связи. Питание возможно как от встроенных аккумуляторов, так и от обычной электросети.

Следующий пример – это портативные цифровые калибраторы давления РМ110, показанные на рис. 2.9. Они предназначены для поверки и калибровки средств измерения давления (визуальных и записывающих манометров, реле давления и т.п.). Для этого, кроме цифрового манометра, в состав калибратора входит также ручной насос с точным регулированием давления. Пневматический ручной насос позволяет создавать и регулировать давление до 2 МПа, гидравлический ручной насос – до 20 МПа. В состав сенсора входит также измеритель температуры, который нужен для точной термокомпенсации погрешностей измерения давления. Калибратор способен фиксировать не только статическое давление, но и кратковременные скачки давления длительностью от 50 мс. Имеются встроенная память и интерфейс RS232.

Портативные цифровые калибраторы давления PM110L и РМ110Н. Размер цифрового манометра 98х92х33 мм, масса 0,5 кг. Диапазон рабочих температур от –10  С до +50  С. Класс точности 0,05 %. Долговременная стабильность 0,01% за год

Рис. 2.9. Портативные цифровые калибраторы давления PM110L и РМ110Н. Размер цифрового манометра 98х92х33 мм, масса 0,5 кг. Диапазон рабочих температур от –10 С до +50 С. Класс точности 0,05 %. Долговременная стабильность 0,01% за год

Сигнал деформации мембраны, в том числе и микроминиатюрной, можно превращать в электрический сигнал не только с помощью тензорезисторов, но преобразовывать и другими способами. На рис. 2.10 для примера показана конструкция чувствительного к изменениям давления деформационного элемента, который работает по принципу интерферометра Фабри-Перо.

Микроминиатюрный мембранный датчик давления. Слева – конструкция, справа – внешний вид и способ применения

Рис. 2.10. Микроминиатюрный мембранный датчик давления. Слева – конструкция, справа – внешний вид и способ применения

Над подложкой 1 сформирована тонкая мембрана 2, на которую снизу нанесена зеркально отражающая свет пленка 3. Полупрозрачный зеркальный слой нанесен и на торец оптического волокна 4. Между ним и пленкой 3 образуется оптический резонатор, который находится внутри герметически закрытой полости 6, заполненной газом. Если давление извне мембраны превосходит давление в полости 6, то мембрана несколько прогибается внутрь, и расстояние между ней и волокном уменьшается. По оптическому волокну в резонатор вводится монохроматический свет, который, многократно отражаясь от зеркальных поверхностей, интерферирует сам с собой. Поэтому интенсивность отраженного обратно в оптическое волокно света существенно зависит от положения мембраны, и таким образом – от внешнего давления.

Фирма FISO Technologies (http://www.fiso.com), используя микросистемную технологию, выпускает такого рода чувствительные элементы с внешним диаметром всего лишь 0,55 мм. Внешний вид чувствительного элемента показан на рис. 2.10 справа вверху на фоне пальцев, которые его держат за оптическое волокно, и ушка иглы, сквозь которое он пройдет.

С помощью иглы-катетера 10 диаметром меньше 1 мм, показанной справа внизу, этот миниатюрный датчик давления 8 и тонкое гибкое оптическое волокно 9 можно ввести в исследуемый объем и контролировать там изменения внутреннего давления. Для этого оптическое волокно связано с интеллектуальным сенсором, в котором под управлением микропроцессора включается источник монохроматического света, вводимого в волокно, измеряется интенсивность обратно отраженного светового потока, по калибровочным данным вычисляется внешнее давление на датчик и выводится на дисплей. В медицине, например, такие сенсоры применяют для контроля внутричерепного давления, для измерений давления крови в легочных артериях, куда иным способом невозможно добраться. Такие интеллектуальные сенсоры находят многочисленные применения также и в других областях науки и техники.

В описанном интеллектуальном сенсоре первичный деформационный сигнал мембраны многократно преобразуется. Сначала в резонаторе Фабри-Перо он преобразуется в оптический сигнал, затем в фотоприемнике – в аналоговый электрический. После аналого-цифрового преобразователя сигнал превращается в цифровой код, а затем на дисплее – в оптическое изображение. Такие многократные преобразования сигналов – не редкость. Они типичны для интеллектуальных сенсоров. Но для систематизации таких сенсоров важна природа именно первичного информационного сигнала.

Краткие итоги

Механические сенсоры по физической природе чувствительных элементов и возникающих в них первичных сигналов подразделяют на следующие виды: деформационные сенсоры, сенсоры линейного и углового перемещения, акселерометры, вибрационные и хроматографические сенсоры.

В последние десятилетия были развиты и промышленно освоены микросистемные технологии (МСТ) – технологии группового изготовления микромеханических деталей, узлов и целых устройств вместе с электрическими цепями для их питания, управления и с электронными микросхемами для обработки информации. С этой целью использованы существовавшие и развиты новые групповые технологические операции и процессы микроэлектроники с интегрированием знаний и методов точной механики и измерительной техники. Созданы системы автоматизированного проектирования микроэлектромеханических интегральных изделий и комплектных систем на кристалле. МСТ открыли новый этап в развитии механических сенсоров. МСТ являются "высокими технологиями", для их осуществления требуются дорогое высокоточное оборудование, обученный персонал, высокочистая производственная среда. Но благодаря тому, что тысячи или даже миллионы компонентов изготовляются одновременно, в едином групповом технологическом процессе, – благодаря этому изделия имеют приемлемую стоимость при очень высоких технических характеристиках.

Наиболее популярными деформационными чувствительными элементами являются биметаллические пластины, спирали, мембраны, пружины, сильфоны, трубки Бурдона. Используются также элементы с упругими деформациями изгиба и кручения. Примерами уже хорошо зарекомендовавших себя деформационных интеллектуальных сенсоров являются: система автоматического контроля давления в шинах большегрузных автомобилей; прецизионные цифровые манометры и высокоточные калибраторы давления; сенсоры для измерения давления внутри труднодоступных полостей.

< Лекция 1 || Лекция 2: 12345 || Лекция 3 >