Принципы работы ППР-сенсоров. Промышленные ППР-сенсоры
Цель лекции: oзнакомить слушателей с явлением поверхностного плазмонного резонанса (ППР) и с принципами его применения для построения сенсоров. Объяснить, от чего зависит разрешающая способность и чувствительность ППР-сенсоров и как с помощью математической обработки результатов измерений можно значительно превзойти физическую разрешающую способность. Рассказать о типичной технологии ППР-анализов при исследованиях в биохимии, иммунологии, онкологии, вирусологии, биотехнологии. Описать наиболее интересные интеллектуальные ППР-сенсоры, которые выпускаются промышленностью.
23.1. Поверхностный плазмонный резонанс и его применение для построения сенсоров
Сенсоры на основе поверхностного плазмонного резонанса (ППР) или сокращенно " ППР сенсоры " – это относительно новый класс сенсоров в отличие от рассмотренных в предыдущих лекциях спектрофотометрических и люминесцентных сенсоров.
Явление поверхностного плазмонного резонанса открыто в конце 60-х годов ХХ века.
23.1.1. Сущность явления ППР условия его наблюдения
Поверхностные плазмоны – это волны переменной плотности электрического заряда, которые могут возникать и распространяться в электронной плазме металла вдоль его поверхности или вдоль тонкой металлической пленки.
Оказалось, что при определенных условиях поверхностные плазмоны могут возбуждаться под воздействием поляризованного света. В 1968 г. это было продемонстрировано в работе [ [ 74 ] ]. Схема наблюдения ППР, которую стали называть по фамилии автора "геометрией Кречмана", показана на рис. 23.1.
Рис. 23.1. Схема оптического наблюдения явления ППР: 1 – прозрачная среда с высоким показателем преломления; 2 – тонкая металлическая пленка; 3 – затухающая электромагнитная волна; 4 – исследуемая жидкость
Свет проходит сквозь оптически прозрачную среду 1 с относительно большим показателем преломления, например, сквозь призму из стекла и падает под определенным углом на тонкую металлическую пленку 2, нанесенную на поверхность стекла. Угол падения должен быть больше угла полного внутреннего отражения. Часть света проникает в металл и распространяется в нем в виде быстро затухающей электромагнитной волны 3. Последняя возбуждает колебания свободных электронов металла – т.н. "электронной плазмы". И в этой плазме могут возникать коллективные колебательные движения электронов, которые принято описывать как квазичастицы – т.н. "поверхностные плазмоны".
Возбуждение становится особенно эффективными при условиях, если:
- свет поляризован;
- поляризация его такова, что электрический вектор электромагнитной волны лежит в плоскости падения, а магнитный вектор параллелен поверхности металла;
- проекция волнового вектора фотонов света на плоскость пленки равна волновому вектору поверхностного плазмона.
Когда эти условия выполнены, то значительная часть энергии света превращается в энергию плазмонов, из-за чего интенсивность отраженного от поверхности металлической пленки света резко падает. Это явление и называют "поверхностным плазмонным резонансом".
Если металлическая пленка 2 достаточно тонка (< 200 нм), то значительная часть затухающей в металле электромагнитной волны достигает противоположной поверхности металла. И тогда ППР становится чувствительным к свойствам той среды 4, которая контактирует с металлом с другой стороны пленки. От электрической поляризации этой среды, в частности от её диэлектрической постоянной (которая у диэлектриков равна квадрату показателя преломления света), зависит положение минимума кривой ППР.
Условие равенства волновых векторов записывается в виде
( 23.1) |
Как видно из этой формулы, изменения свойств металла или показателя преломления среды 4 изменяют правую сторону уравнения (23.1), вследствие чего положение резонанса изменяется.
23.1.2. Виды кривой ППР
Типичная кривая ППР, т.е. зависимость интенсивности отраженного металлической пленкой света от проекции волнового вектора на плоскость пленки, показана на рис. 23.2. Здесь по вертикали отложена в относительных единицах интенсивность отраженного света, а по горизонтали – проекция или пропорциональная ей величина – тоже в относительных единицах. Наблюдается четкий и довольно острый резонанс. При изменении свойств металлической пленки (значений и ) или показателя преломления n расположенной снаружи среды минимум резонансной кривой заметно смещается.
Рис. 23.2. Типичная кривая ППР – зависимость интенсивности отраженного света от проекции волнового вектора на плоскость пленки
Поэтому в самом начале измерение кривых ППР рассматривалось только как очень чувствительный метод изучения оптических свойств и состояния поверхности металлов, оптических свойств металлических пленок, а позже – как один из точнейших методов рефрактометрии, т.е. определения показателя преломления жидкостей и газов. Ведь этим методом удаётся измерять показатель преломления с точностью до 6-го знака после запятой [ [ 66 ] , [ 73 ] , [ 85 ] , [ 143 ] , [ 290 ] ]. Благодаря последнему метод ППР начали использовать и для определения концентрации в жидкостях растворенных веществ, которые несколько изменяют их показатель преломления.
Кривую ППР можно наблюдать в одном из двух режимов.
Если зафиксировать угол падения и облучать металлическую пленку светом широкого спектра, то, разложив этот свет в спектр, мы будем наблюдать ППР, как резонансный минимум в распределении спектральной интенсивности отраженного света. Эти зависимости показаны на рис. 23.3 слева. По горизонтали отложены значения т.н. "волнового числа" в см–1, по вертикали – коэффициент отражения в %. Чувствительность обнаружения изменений в этом случае определяется минимальным спектральным сдвигом минимума ППР, который можно зарегистрировать.
Если применить монохроматический свет , то наблюдается резонансный минимум в угловой зависимости интенсивности отражения ( рис. 23.3, справа). Здесь по горизонтали отложены значения угла отражения в градусах. Чувствительность обнаружения изменений в этом случае определяется уже наименьшим угловым сдвигом минимума ППР, который можно зарегистрировать. В обоих случаях на рис. 23.3 сплошной линией показана кривая ППР при отсутствии, а штриховой – при наличии покрытия на золотой пленке. Минимумы отражения отмечены пунктирными линиями.
23.1.3. Возможность применения ППР для биохимических анализов
В 80-х годах ХХ в. выяснилось, что ППР может стать и чувствительным методом выявления присутствия даже незначительного количества разных биологических примесей. Для этого на внешней поверхности тонкой золотой пленки биохимическими методами высаживают ("иммобилизуют") мономолекулярный слой " лиганда " или " рецептора " ( рис. 23.4). Это слой органических молекул, которые избирательно взаимодействуют с "аналитом" – теми молекулами (частицами), концентрацию которых в растворе мы хотим измерять.
Рис. 23.4. Схема наблюдения сдвига кривой ППР при наличии аналита: 1 – прозрачная среда с высоким показателем преломления; 2 – тонкая металлическая пленка; 3 – чувствительный слой лиганда; 4 – молекулы (частицы) аналита
Если в качестве "рецептора" используются молекулы или частицы биологического происхождения, то ППР сенсоры часто называют " ППР биосенсорами ", а чувствительный слой – "биорецепторным" слоем. Различают две большие группы биорецепторных слоев: на основе ферментов и на основе антител. В последнем случае ППР сенсоры называют также " ППР иммуносенсорами ".
Когда молекулы (частицы) аналита присоединяются к молекулам лиганда (рецептора), создаваемое последними электрическое поле на поверхности металла несколько изменяется, вследствие чего резонансный минимум ППР смещается. Сдвиг этот тем больше, чем больше молекул (частиц) аналита присоединилось к биочувствительному слою лиганда. А это зависит от концентрации аналита в исследуемом растворе и от кинетики процессов биохимического взаимодействия аналита с лигандом [ [ 63 ] , [ 132 ] ].
Таким образом, измеряя величину сдвига минимума кривой ППР, в принципе стало возможным обнаруживать присутствие и измерять концентрацию в растворах многих важных биохимических веществ и микрочастиц (вирусов, бактерий, антител, ...). А снимая зависимость величины сдвига от времени, можно изучать кинетику их биохимических взаимодействий и ее зависимость от различных факторов. Собственно, сам прецизионный биохимический анализ на молекулярном уровне выполняет в этом случае специфический чувствительный слой лиганда (биорецептора), нанесенного на поверхность металлической пленки, а метод ППР позволяет довольно точно "считывать" результаты этого анализа.
Перед такими чувствительными ППР биосенсорами открылась широкая область применений. Это – и научные исследования в области биохимии, и обнаружение опасных загрязнений, отравляющих и химически вредных примесей в питьевой воде, и контроль концентрации разных ингредиентов в молоке, пиве, вине, других напитках, в бензине и моторных маслах и т.п. Появилась возможность быстрого обнаружения вредных вирусов, бактерий, биохимических веществ в жидкостях, в том числе и в полевых условиях, а также возможность создания многих новых тонких методов научных исследований [ [ 7 ] , [ 54 ] , [ 63 ] , [ 90 ] , [ 105 ] , [ 110 ] , [ 127 ] , [ 312 ] ].
Чувствительностью ППР сенсора называют ту наименьшую концентрацию аналита, которую можно надежно зафиксировать с помощью этого сенсора. Чувствительность зависит от ряда факторов, в частности, от того, какая часть аналита уже связалась с рецепторным слоем. А это зависит от температуры и времени их взаимодействия. Но, пожалуй, определяющую роль играет тот минимальный угол сдвига кривой ППР, который можно надежно зафиксировать с помощью программно-технических средств сенсора.