Численные методы решения задачи Коши для систем обыкновенных дифференциальных уравнений
Общие условия аппроксимации методов Рунге - Кутты и барьеры Бутчера. Вернемся к общей записи метода Рунге - Кутты (8.4) и соответствующей таблице Бутчера. Рассматривается задача
u(0) = u0,
а численный метод имеет вид
где ki — вспомогательные векторы.
Наряду с явными, рассмотрим также неявные методы Рунге - Кутты, определенные как
таблица Бутчера для неявных методов примет вид
Для вывода условий аппроксимации общего метода Рунге - Кутты необходимо действовать так же, как описано выше. Для этого введем погрешность
и представим ее в виде разложения в ряд Маклорена. Приравнивая члены при одинаковых степенях шага получим условия аппроксимации метода. Для того чтобы метод имел порядок 3, необходимо выполнение следующих условий:
причем эти выражения упрощаются, если воспользоваться необязательными условиями Кутты. При повышении порядка аппроксимации метода возникают дополнительные условия на коэффициенты, система значительно усложняется.
Для того чтобы построить аппроксимирующую схему ( метод Рунге - Кутты ) необходимо найти набор коэффициентов метода. Как было показано выше, в случае двух стадий метода такой набор коэффициентов — не единственный, существует континуум методов второго порядка аппроксимации. Континуум решений система уравнений порядка для явных методов Рунге - Кутты имеет и в случае явных методов с тремя или четырьмя стадиями. Но для пятистадийного метода система уравнений порядка является несовместной. Это утверждение было доказано Бутчером и носит название "первый барьер Бутчера". Его обычно формулируют в виде теоремы [8.3].
Теорема (первый барьер Бутчера.) Среди явных методов Рунге - Кутты с числом стадий пять не существует методов пятого порядка аппроксимации.
Для повышения порядка до пятого приходится использовать шестистадийные методы. При увеличении числа стадий возникает второй барьер Бутчера — порядок аппроксимации метода, начиная с семи стадий, оказывается уже на 2 ниже, чем число стадий. При увеличении порядка аппроксимации метода приходится значительно увеличивать число стадий — барьеры Бутчера встречаются чаще.
Наличие такого барьера — одно из следствий быстрого роста констант Лебега при интерполяции на равномерной сетке. Дело в том, что явные методы Рунге - Кутты тесно связаны с квадратурными формулами интерполяционного типа. Достаточно очевидно, что классический метод Рунге - Кутты порядка 4 основан на применении формулы Симпсона, а правило 3/8 — на одноименной квадратурной формуле. Как было показано в "Численное интегрирование" , с повышением порядка аппроксимации квадратурные формулы перестают быть правильными, а это следствие роста константы Лебега. Тогда и появляются барьеры Бутчера при построении методов решения систем ОДУ.
От этого недостатка свободны некоторые неявные методы, основанные на квадратурных формулах Гаусса.