В дисциплине "Основы эконометрики" тест 6 дается по теме 7. |
Приложение 2: Основные положения теории вероятностей
Числовые характеристики случайных величин
Описание случайной величины с помощью функции распределения является исчерпывающим, но для практических задач излишне подробным и не всегда удобным. Часто в приложениях бывает достаточно характеризовать свойства случайной величины посредством некоторого числа, т.е. перейти к числовым характеристикам.
Математическим ожиданием (средним значением) дискретной случайной величины называется величина
Для непрерывной случайной величины, заданной плотностью распределения, математическое ожидание вычисляется как
Основные свойства математического ожидания:
- , где - неслучайная величина;
- ;
- ;
- , если и некоррелированные случайные величины.
Математическое ожидание характеризует центр группирования значений случайной величины. Характеристикой рассеяния случайной величины относительно центра распределения служит дисперсия, определяемая как математическое ожидание квадрата отклонения случайной величины: , или после преобразований . Для вычисления дисперсии в случае дискретной величины можно использовать, например, формулу
а в случае непрерывной случайной величины —
Основные свойства дисперсии:
- , где - неслучайная величина;
- ;
- , если и некоррелированные случайные величины.
Среднеквадратическое (стандартное) отклонение определяется как квадратный корень из дисперсии:
Мерой взаимосвязи двух случайных величин и может служить коэффициент ковариации, численно равный величине
или аналогично вычислению дисперсии,
Основным свойством коэффициента ковариации является его равенство нулю в случае независимости случайных величин и . (При этом обратное утверждение, вообще говоря, неверно!) Однако зависимость величины от масштаба измерения величин и делает неудобным его использование в практических приложениях. Поэтому в качестве меры связи признаков обычно используют другую числовую характеристику , называемую коэффициентом корреляции
Следующие свойства коэффициента корреляции являются наиболее существенными:
- (абсолютное значение коэффициента корреляции не превосходит единицы);
- только в том случае, когда случайные величины и связаны линейной зависимостью;
- если и - независимые величины, то . В этом случае говорят, что эти величины не коррелируют;
- величина \rho XY инвариантна относительно линейных преобразований.
В случае многомерных случайных величин в рассмотрение вводятся соответствующие аналоги. Так, если , то вектором средних значений называют вектор , который является характеристикой центра группирования. В качестве меры рассеяния компонент и их взаимосвязи используют матрицу ковариаций
элементы которой определяются равенством . Определитель этой матрицы называется обобщенной дисперсией. По причине, указанной выше, в практических приложениях предпочитают использовать матрицу, составленную из коэффициентов корреляции, , — корреляционную матрицу. Аналогичным образом определяется взаимосвязь многомерных случайных величин и .