Опубликован: 09.11.2009 | Доступ: свободный | Студентов: 3659 / 734 | Оценка: 4.66 / 4.45 | Длительность: 54:13:00
Специальности: Экономист
Лекция 14:

Высокие статистические технологии

< Лекция 13 || Лекция 14: 12 || Лекция 15 >

Основная современная проблема в области статистических технологий состоит в обеспечении того, чтобы в конкретных исследованиях использовались только технологии первых двух типов.

Каковы возможные пути решения этой проблемы? Бороться с конкретными невеждами - дело почти безнадежное. Конечно, необходима демонстрация квалифицированного применения высоких статистических технологий. В 1960-70-х годах этим занималась Лаборатория статистических методов акад. А.Н. Колмогорова в МГУ им. М.В. Ломоносова. В секции "Математические методы исследования" журнала "Заводская лаборатория" за последние 40 лет опубликовано более 1000 статей в стиле "высоких статистических технологий". В настоящее время действует Институт высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана и целый ряд других научных коллективов, работающих на уровне "высоких статистических технологий".

Очевидно, самое основное - это обучение. Какие бы новые научные результаты ни были получены, если они остаются неизвестными студентам, то новое поколение исследователей и инженеров, экономистов и менеджеров, других специалистов вынуждено осваивать их поодиночке, в порядке самообразования, а то и переоткрывать заново. То есть зачастую новые научные результаты практически исчезают из оборота научной и практической информации, едва появившись. Как ни странно это может показаться, избыток научных публикаций превратился в тормоз развития науки. По нашим данным, к настоящему времени по статистическим технологиям опубликовано не менее миллиона статей и книг, в основном во второй половине ХХ в., из них не менее 100 тысяч являются актуальными для современного специалиста. При этом реальное число публикаций, которые способен освоить исследователь за свою профессиональную жизнь, по нашей оценке, не превышает 2-3 тысяч. Итак, каждый специалист в области прикладной статистики знаком не более чем с 2-3% актуальных для него литературных источников. Поскольку существенная часть публикаций заражена "низкими статистическими технологиями", то исследователь-самоучка, увы, имеет мало шансов выйти на уровень "высоких статистических технологий". С подтверждениями этого печального вывода постоянно приходится сталкиваться. Одновременно приходится констатировать, что масса полезных результатов погребена в изданиях прошлых десятилетий и имеет мало шансов пробиться в ряды используемых в настоящее время "высоких статистических технологий" без специально организованных усилий современных специалистов.

Итак, основное - обучение. Несколько огрубляя, можно сказать так: что попало в учебные курсы и соответствующие учебные пособия - то сохраняется, что не попало - то пропадает.

Необходимость высоких статистических технологий. Может возникнуть естественный вопрос: зачем нужны высокие статистические технологии, разве недостаточно обычных статистических методов? Специалисты по прикладной статистике справедливо считают и доказывают своими теоретическими и прикладными работами, что совершенно недостаточно. Так, совершенно очевидно, что многие данные в информационных системах имеют нечисловой характер, например, являются словами или принимают значения из конечных множеств. Нечисловой характер имеют и упорядочения, которые дают эксперты или менеджеры, например, выбирая главную цель, следующую по важности и т.д. Значит, нужна статистика нечисловых данных. Мы ее построили. Далее, многие величины известны не абсолютно точно, а с некоторой погрешностью - от и до. Другими словами, исходные данные - не числа, а интервалы. Нужна статистика интервальных данных. Мы ее развиваем. В широко известной монографии по контроллингу [ [ 13.18 ] ] на с.138 четко отмечено: "Нечеткая логика - мощный элегантный инструмент современной науки, который на Западе (и на Востоке - в Японии, Китае - А.О.) можно встретить в десятках изделий - от бытовых видеокамер до систем управления вооружениями, - у нас до самого последнего времени был практически неизвестен". Напомним, что первая монография российского автора по теории нечеткости содержит основы высоких статистических технологий, связанных с анализом выборок нечетких множеств (см. [ [ 1.16 ] ]). Ни статистики нечисловых данных, ни статистики интервальных данных, ни статистики нечетких данных не было и не могло быть в классической статистике. Все это - высокие статистические технологии. Они разработаны за последние десятилетия. А обычные вузовские курсы по общей теории статистики и по математической статистике разбирают научные результаты, полученные в первой половине ХХ века.

Важная и весьма перспективная часть прикладной статистики - применение высоких статистических технологий к анализу конкретных данных, что зачастую требует дополнительных теоретических исследований по доработке статистических технологий применительно к конкретной ситуации. Большое значение имеют конкретные статистические модели, например, модели экспертных оценок или эконометрики качества. И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим экономистам и менеджерам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции.

Институт высоких статистических технологий и эконометрики. Опишем опыт внедрения "высоких статистических технологий". Организованный нами в 1989 г. Институт высоких статистических технологий и эконометрики (ИВСТЭ) действует на базе кафедры ИБМ-2 "Экономика и организация производства" Московского государственного технического университета им. Н.Э.Баумана. Институт на хоздоговорных и госбюджетных началах занимается развитием, изучением и внедрением эконометрики и "высоких статистических технологий", т.е. наиболее современных технологий анализа экономических, технических, социологических, медицинских данных, ориентированных на использование в условиях современного производства и экономики. Основной интерес представляют применения "высоких статистических технологий" для анализа конкретных экономических данных, т.е. в эконометрике. Наиболее перспективным представляется применение "высоких статистических технологий" для поддержки принятия управленческих решений, прежде всего в таком новом (для России) современном направлении экономической науки и практики, как контроллинг (см., например, [ [ 13.18 ] ]).

Вначале Институт действовал как Всесоюзный центр статистических методов и информатики Центрального правления Всесоюзного экономического общества. В 1990-1992 гг. было выполнено более 100 хоздоговорных работ, в том числе для НИЦентра по безопасности атомной энергетики, ВНИИ нефтепереработки, ПО "Пластик", ЦНИИ черной металлургии им. Бардина, НИИ стали, ВНИИ эластомерных материалов и изделий, НИИ прикладной химии, ЦНИИ химии и механики, НПО "Орион", ВНИИ экономических проблем развития науки и техники, ПО "Уралмаш", "АвтоВАЗ", МИИТ, Казахского политехнического института, Донецкого государственного университета, Института питания (Алма-Ата) и многих других.

Затем Институт разрабатывал эконометрические методы анализа нечисловых данных, а также процедуры расчета и прогнозирования индекса инфляции и валового внутреннего продукта. ИВСТЭ развивал методологию построения и использования математических моделей процессов налогообложения (для Министерства налогов и сборов РФ), методологию оценки рисков реализации инновационных проектов высшей школы (для Министерства промышленности, науки и технологий РФ). Институт оценивал влияние различных факторов на формирование налогооблагаемой базы ряда налогов (для Минфина РФ), прорабатывал перспективы применения современных статистических и экспертных методов для анализа данных о научном потенциале (для Министерства промышленности, науки и технологий РФ). Важное направление связано с эколого-экономической тематикой - разработка методологического, программного и информационного обеспечения анализа рисков химико-технологических объектов (для Международного научно-технического центра), методов использования экспертных оценок в задачах экологического страхования (совместно с Институтом проблем рынка РАН). Институт проводил маркетинговые исследования (в частности, для Institute for Market Research GfK MR, Промрадтехбанка, фирм, торгующих растворимым кофе, программным обеспечением, оказывающих образовательные услуги). Интерес вызывали работы Института по прогнозированию социально-экономического развития России методом сценариев, по экономико-математическому моделированию развития малых предприятий и созданию современных систем информационной поддержки принятия решений для таких организаций.

Институт ведет фундаментальные исследования в области высоких статистических технологий и эконометрики, в частности, в рамках МГТУ им. Н.Э. Баумана и Российского фонда фундаментальных исследований. Информация об Институте представлена на сайтах в ИНТЕРНЕТе (http://orlovs.pp.ru, а также http://antorlov.nm.ru, http://antorlov.euro.ru, http://www.newtech.ru/~orlov), которые за год посещают более 50000 пользователей. Институтом издается компьютерный еженедельник "Эконометрика" (более 1000 подписчиков). Архив выпусков "Эконометрики" можно рассматривать как хрестоматию по различным разделам эконометрики, а также по высоким статистическим технологиям.

Термин "эконометрика" пока мало известен в России. А между тем в мировой науке эконометрика занимает достойное место. Напомним, что Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо, Джеймс Хекман и Дэниель Мак-Фадден. В 2003 г. к ним добавились Энгл Грейнджер и Кеннет Риглз. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе: Journal of Econometrics (Швеция), Econometric Reviews (США), Econometrica (США), Sankhya ( Indian Journal of Statistics. Ser.D. Quantitative Economics. Индия), Publications Econometriques (Франция). Применение эконометрики дает заметный экономический эффект. Например, в США - не менее 20 млрд долл. ежегодно только в области статистического контроля качества.

Однако в нашей стране по ряду причин прикладная статистика и эконометрика не были сформированы как самостоятельные направления научной и практической деятельности, в отличие, например, от Польши, не говоря уже об англосаксонских странах. В результате специалистов в области прикладной статистики и эконометрики у нас на порядок меньше, чем в США и Великобритании (Американская статистическая ассоциация включает более 20000 членов).

О подготовке специалистов по высоким статистическим технологиям. Приходится с сожалением констатировать, что в России плохо налажена подготовка специалистов по высоким статистическим технологиям. В курсах по теории вероятностей и математической статистике обычно даются лишь классические основы этих дисциплин, разработанные в первой половине ХХ в., а преподаватели-математики свою научную деятельность предпочитают посвящать доказательству теорем, имеющих лишь внутриматематическое значение, а не развитию высоких статистических технологий. В настоящее время появилась надежда на развитие эконометрики. В России начинают развертываться эконометрические исследования и преподавание эконометрики. Экономисты, менеджеры и инженеры, прежде всего специалисты по контроллингу, должны быть вооружены современными средствами информационной поддержки, в том числе высокими статистическими технологиями и эконометрикой. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?

Приведем два примера - отрицательный и положительный, - показывающие связь преподавания с внедрением передовых технологий.

Один раз, в 1990-1992 гг., мы уже обожглись на недооценке необходимости предварительной подготовки тех, для кого предназначены современные программные продукты. Наш коллектив (Всесоюзный центр статистических методов и информатики Центрального Правления Всесоюзного экономического общества) разработал систему диалоговых программных систем обеспечения качества продукции. Их созданием руководили ведущие специалисты страны. Но распространение программных продуктов шло на 1-2 порядка медленнее, чем мы ожидали. Причина стала ясна не сразу. Как оказалось, работники предприятий просто не понимали возможностей разработанных систем, не знали, какие задачи можно решать с их помощью, какой экономический эффект они дадут. А не понимали и не знали потому, что в вузах никто их не учил статистическим методам управления качеством. Без такого систематического обучения нельзя обойтись - сложные концепции "на пальцах" за пять минут не объяснишь.

Есть и противоположный пример - положительный. В середине 1980-х годов в советской средней школе ввели новый предмет "Информатика". И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки, и этим заметно отличается от тех, кому за 40-50 лет.

Если бы удалось ввести в средней школе курс теории вероятностей и статистики, то ситуация с внедрением высоких статистических технологий могла бы быть резко улучшена. Такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах мира (и ЮНЕСКО проводит всемирные конференции по преподаванию статистики в средней школе - см. сборник докладов [ [ 13.50 ] ]) Надо, конечно, добиться того, чтобы этот курс был построен на высоких статистических технологиях, а не на низких. Другими словами, он должен отражать современные достижения, а не концепции пятидесятилетней или столетней давности.

< Лекция 13 || Лекция 14: 12 || Лекция 15 >