Донецкий национальный технический университет
Опубликован: 09.07.2007 | Доступ: свободный | Студентов: 3134 / 726 | Оценка: 4.34 / 4.12 | Длительность: 13:54:00
Специальности: Программист
Лекция 1:

Математическое моделирование. Математическая модель в задачах оптимизации. Элементарные математические модели

Лекция 1: 123456 || Лекция 2 >
Аннотация: Данная лекция рассматривает базовые понятия математического моделирования, их признаки и свойства, а также целесообразность и область применения. Также широко освещен круг вопросов, касаемых практического применения математического моделирования. В данной лекции рассматриваются вопросы, посвященные методологии математического моделирования. В частности, рассматривается математическая модель как основной объект математического моделирования; различные подходы к построению математических моделей, такие, как фундаментальные законы природы, вариационные принципы, применение аналогий, иерархический подход; затрагиваются вопросы нелинейности математических моделей, их оснащенности, численной реализации.

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его "образом" — математической моделью — и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот "третий метод" познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента). Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы - от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.

Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово "алгоритм" происходит от имени средневекового арабского ученого Аль-Хорезми. Второе "рождение" этой методологии пришлось на конец 40-х—начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них — появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ — выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно "осуществлены" в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам).

Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, "встраиваясь" в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными "ресурсами" нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного "сырья" в готовый "продукт", т.е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества.


Рис. 1.1.

На первом этапе выбирается (или строится) "эквивалент" объекта, отражающий в математической форме важнейшие его свойства - законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д. Математическая модель (или ее фрагменты) исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте.

Второй этап — выбор (или разработка) алгоритма для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые нужно произвести, чтобы найти искомые величины с заданной точностью. Вычислительные алгоритмы должны не искажать основные свойства модели и, следовательно, исходного объекта, быть экономичными и адаптирующимися к особенностям решаемых задач и используемых компьютеров.

На третьем этапе создаются программы, "переводящие" модель и алгоритм на доступный компьютеру язык. К ним также предъявляются требования экономичности и адаптивности. Их можно назвать "электронным" эквивалентом изучаемого объекта, уже пригодным для непосредственного испытания на "экспериментальной установке" — компьютере.

Создав триаду "модель—алгоритмпрограмма", исследователь получает в руки универсальный, гибкий и недорогой инструмент, который вначале отлаживается, тестируется в "пробных" вычислительных экспериментах. После того как адекватность (достаточное соответствие) триады исходному объекту удостоверена, с моделью проводятся разнообразные и подробные "опыты", дающие все требуемые качественные и количественные свойства и характеристики объекта. Процесс моделирования сопровождается улучшением и уточнением, по мере необходимости, всех звеньев триады.

Будучи методологией, математическое моделирование не подменяет собой математику, физику, биологию и другие научные дисциплины, не конкурирует с ними. Наоборот, трудно переоценить его синтезирующую роль. Создание и применение триады невозможно без опоры на самые разные методы и подходы — от качественного анализа нелинейных моделей до современных языков программирования. Оно дает новые дополнительные стимулы самым разным направлениям науки.

Рассматривая вопрос шире, напомним, что моделирование присутствует почти во всех видах творческой активности людей различных "специальностей" — исследователей и предпринимателей, политиков и военачальников. Привнесение в эти сферы точного знания помогает ограничить интуитивное умозрительное "моделирование", расширяет поле приложений рациональных методов. Конечно же, математическое моделирование плодотворно лишь при выполнении хорошо известных профессиональных требований: четкая формулировка основных понятий и предположений, апостериорный анализ адекватности используемых моделей, гарантированная точность вычислительных алгоритмов и т.д. Если же говорить о моделировании систем с участием "человеческого фактора", т.е. трудноформализуемых объектов, то к этим требованиям необходимо добавить аккуратное разграничение математических и житейских терминов (звучащих одинаково, но имеющих разный смысл), осторожное применение уже готового математического аппарата к изучению явлений и процессов (предпочтителен путь "от задачи к методу", а не наоборот) и ряд других.

Решая проблемы информационного общества, было бы наивно уповать только на мощь компьютеров и иных средств информатики. Постоянное совершенствование триады математического моделирования и ее внедрение в современные информационно-моделирующие системы - методологический императив. Лишь его выполнение дает возможность получать так нужную нам высокотехнологичную, конкурентоспособную и разнообразную материальную и интеллектуальную продукцию.

Лекция 1: 123456 || Лекция 2 >