Московский государственный технический университет им. Н.Э. Баумана
Опубликован: 20.09.2007 | Доступ: свободный | Студентов: 11599 / 3626 | Оценка: 4.57 / 4.34 | Длительность: 15:36:00
ISBN: 978-5-94774-737-9
Лекция 9:

Аутентификация в беспроводных сетях

Спецификация WPA

До мая 2001 г. стандартизация средств информационной безопасности для беспроводных сетей 802.11 относилась к ведению рабочей группы IEEE 802.11e, но затем эта проблематика была выделена в самостоятельное подразделение. Разработанный стандарт 802.11i призван расширить возможности протокола 802.11, предусмотрев средства шифрования передаваемых данных, а также централизованной аутентификации пользователей и рабочих станций.

Основные производители Wi-Fi оборудования в лице организации WECA (Wireless Ethernet Compatibility Alliance), иначе именуемой Wi-Fi Alliance, устав ждать ратификации стандарта IEEE 802.11i, совместно с IEEE в ноябре 2002 г. анонсировали спецификацию Wi-Fi Protected Access (WPA), соответствие которой обеспечивает совместимость оборудования различных производителей.

Новый стандарт безопасности WPA обеспечивает уровень безопасности куда больший, чем может предложить WEP Он перебрасывает мостик между стандартами WEP и 802.11i и имеет немаловажное преимущество, которое заключается в том, что микропрограммное обеспечение более старого оборудования может быть заменено без внесения аппаратных изменений.

IEEE предложила временный протокол целостности ключа (Temporal Key Integrity Protocol, TKIP).

Основные усовершенствования, внесенные протоколом TKIP:

  • Пофреймовое изменение ключей шифрования. WEP-ключ быстро изменяется, и для каждого фрейма он другой;
  • Контроль целостности сообщения. Обеспечивается эффективный контроль целостности фреймов данных с целью предотвращения скрытых манипуляций с фреймами и воспроизведения фреймов;
  • Усовершенствованный механизм управления ключами.
Пофреймовое изменение ключей шифрования

Атаки, применяемые в WEP, использующие уязвимость слабых IV (Initialization Vectors), таких, которые применяются в приложении AirSnort, основаны на накоплении нескольких фреймов данных, содержащих информацию, зашифрованную с использованием слабых IV. Простейшим способом сдерживания таких атак является изменение WEP-ключа, используемого при обмене фреймами между клиентом и точкой доступа, до того как атакующий успеет накопить фреймы в количестве, достаточном для вывода битов ключа.

IEEE адаптировала схему, известную как пофреймовое изменение ключа (per-frame keying). Основной принцип, на котором основано пофреймовое изменение ключа, состоит в том, что IV, MAC-адрес передатчика и WEP-ключ обрабатываются вместе с помощью двухступенчатой функции перемешивания. Результат применения этой функции соответствует стандартному 104-разрядному WEP-ключу и 24-разрядному IV.

IEEE предложила также увеличить 24-разрядный вектор инициализации до 48-разрядного IV.

На рис. 9.7 представлен образец 48-разрядного IV и показано, как он разбивается на части для использования при пофреймовом изменении ключа.

Разбиение 48-разрядного IV

Рис. 9.7. Разбиение 48-разрядного IV

Процесс пофреймового изменения ключа можно разбить на следующие этапы ( рис. 9.8):

  1. Базовый WEP-ключ перемешивается со старшими 32 разрядами 48-разрядного IV (32-разрядные числа могут принимать значения 0-4 294 967 295) и MAC-адресом передатчика. Результат этого действия называется ключ 1-й фазы. Этот процесс позволяет занести ключ 1-й фазы в кэш и также напрямую поместить в ключ.
  2. Ключ 1-й фазы снова перемешивается с IV и MAC-адресом передатчика для выработки значения пофреймового ключа.
  3. Вектор инициализации (IV), используемый для передачи фрейма, имеет размер только 16 бит (16-разрядные числа могут принимать значения 0-65 535). Оставшиеся 8 бит (в стандартном 24-битовом IV) представляют собой фиксированное значение, используемое как заполнитель.
  4. Пофреймовый ключ применяется для WEP-шифрования фрейма данных.
  5. Когда 16-битовое пространство IV оказывается исчерпанным, ключ 1-й фазы отбрасывается и 32 старших разряда увеличиваются на 1.
  6. Значение пофреймового ключа вычисляется заново, как на этапе 2.
Процесс создания шифрованного сообщения в WPA

Рис. 9.8. Процесс создания шифрованного сообщения в WPA

Процесс пофреймового изменения ключа можно разбить на следующие этапы.

Устройство инициализирует IV, присваивая ему значение 0. В двоичном представлении это будет значение 000000000000000000000000000000 000000000000000000.

Первые 32 разряда IV (в рассматриваемом случае - первые 32 нуля) перемешиваются с WEP-ключом (например, имеющим 128-разрядное значение) и MAC-адресом передатчика (имеющим 48-разрядное значение) для получения значения ключа 1-й фазы (80-разрядное значение).

Ключ 1-й фазы вновь перемешивается с первыми (старшими) 32 разрядами IV и MAC-адресом передатчика, чтобы получить 128-разрядный пофреймовый ключ, первые 16 разрядов которого представляют собой значение IV (16 нулей).

Вектор инициализации пофреймового ключа увеличивается на 1. После того как пофреймовые возможности IV будут исчерпаны, IV 1-й фазы (32 бита) увеличивается на 1 (он теперь будет состоять из 31 нуля и одной единицы, 00000000000000000000000000000001 ) и т. д.

Этот алгоритм усиливает WEP до такой степени, что почти все известные сейчас возможности атак устраняются без замены существующего оборудования. Следует отметить, что этот алгоритм (и TKIP в целом) разработан с целью устранить уязвимые места в системе аутентификации WEP и стандарта 802.11. Он жертвует слабыми алгоритмами, вместо того чтобы заменять оборудование.

Нияз Сабиров
Нияз Сабиров

Здравствуйте. А уточните, пожалуйста, по какой причине стоимость изменилась? Была стоимость в 1 рубль, стала в 9900 рублей.

Елена Сапегова
Елена Сапегова

для получения диплома нужно ли кроме теоретической части еще и практическую делать? написание самого диплома требуется?