Опубликован: 25.07.2006 | Уровень: для всех | Доступ: свободно
Лекция 14:

Сетевое планирование и управление

Для нумерации событий применяется следующий способ. Вычеркиваются все работы, выходящие из события с номером "0", и просматриваются все события, в которых оканчиваются эти вычеркнутые работы. Среди просмотренных находятся события, которые не имеют входящих в них работ (за исключением уже вычеркнутых). Они называются событиями первого ранга и обозначаются (вообще, в произвольном порядке) числами натурального ряда, начиная с единицы (на рис. 14.1 это событие 1). Затем вычеркиваются все работы, выходящие из событий первого ранга, и среди них находятся события, не имеющие входящих работ (кроме вычеркнутых). Это — события второго ранга, которые нумеруются следующими числами натурального ряда (например, 2 и 3 на рис. 14.1). Проделав таким способом (k-1) шаг, определяют события (k-1) - го ранга, и просматривая события, в которых эти работы заканчиваются, выбирают события, не имеющие ни одной входящей в них работы (кроме вычеркнутых). Это события k -го ранга, и нумеруются они последовательными числами натурального ряда, начиная с наименьшего, еще не использованного числа при предыдущей нумерации на (k-1) -м шаге.


Рис. 14.1.

Сетевой график содержит конечное число событий. Поскольку в процессе вычеркивания движение осуществляется в направлении стрелок (работ), никакое предшествующее событие не может получить номер, больший, чем любое последующее. Всегда найдется хотя бы одно событие соответствующего ранга, и все события получат номера за конечное число шагов.

Работа обычно кодируется номерами событий, между которыми они заключены, то есть парой (i,j), где i — номер предшествующего события, j — номер последующего события.

В одно и то же событие могут входить (выходить) одна или несколько работ. Поэтому свершение события зависит от завершения самой длительной из всех входящих в него работ.

Взаимосвязь между работами определяется тем, что начало последующей работы обусловлено окончанием предыдущей. Отсюда следует, что нет работ, не связанных началом и окончанием с другими работами через события.

Последовательные работы и события формируют цепочки (пути), которые ведут от исходного события сетевого графика к завершающему. Например, путь 0\to 1\to 2\to 5\to 6\to 7 сетевого графика, показанного на (рис.14.1), включает в себя события 0,1,2,5,6,7 и работы (0-1),(1-2),(2-5),(5-6),(6-7).

На основании изложенного можно сказать, что ранг события — это максимальное число отдельных работ, входящих в какой-либо из путей, ведущих из нулевого (исходного) события в данное. Так, события первого ранга не имеют путей, состоящих более чем из одной работы, ведущих в них из 0 (например, событие 1 на рис.14.1). События второго ранга связаны с 0 путями, которые состоят не более чем из двух работ, причем для каждого события второго ранга хоть один такой путь обязательно существует. Например, на (рис.14.1) событие 4 — событие третьего ранга, так как пути, ведущие в это событие из 0, включают только три работы — (0-1),(1-3) и (3-4) или (0-1), (1-2) и (2-4).

Построенный таким образом сетевой график в терминах теории графов представляет собой направленный граф.

На рисунке изображен сетевой график. Граф, не содержащий циклов и имеющий только один исток и только один сток, называется направленным графом. Сетевой график есть ориентированный связный асимметрический граф с одним истоком, одним стоком и без циклов, то есть это направленный граф. При этом вершинами графа служат события сетевого графика, а дугами (ребрами) — работы сетевого графика.

Продолжительность работы представляет собой, в терминах теории графов, длину дуги. Следовательно, длина пути T — это сумма длин всех дуг, образующих данный путь, то есть T=\sum t_{i,j},t_{i,j} \in T, где символом t_{i,j} обозначается дуга, которая соединяет вершины i и j и направлена от вершины i к вершине j.

Никита Толышев
Никита Толышев
Что такое сеть?
Владислав Нагорный
Владислав Нагорный
Высшее образование
Петр Гончар-Зайкин
Петр Гончар-Зайкин
Россия
Светлана Ведяева
Светлана Ведяева
Россия, Саратов