Порождение комбинаторных объектов
2.5. Коды Грея и аналогичные задачи
Иногда бывает полезно перечислять объекты в таком порядке, чтобы каждый следующий минимально отличался от предыдущего. Рассмотрим несколько задач такого рода.
2.5.1. Перечислить все последовательности длины n из чисел 1..k в таком порядке, чтобы каждая следующая отличалась от предыдущей в единственной цифре, причем не более, чем на 1.
Решение. Рассмотрим прямоугольную доску ширины n и высоты k. На каждой вертикали будет стоять шашка. Таким образом, положения шашек соответствуют последовательностям из чисел 1..k длины n ( s -ый член последовательности соответствует высоте шашки на s -ой вертикали). На каждой шашке нарисуем стрелочку, которая может быть направлена вверх или вниз. Вначале все шашки поставим на нижнюю горизонталь стрелочкой вверх. Далее двигаем шашки по такому правилу: найдя самую правую шашку, которую можно подвинуть в направлении (нарисованной на ней) стрелки, двигаем ее на одну клетку в этом направлении, а все стоящие правее нее шашки (они уперлись в край) разворачиваем кругом.
Ясно, что на каждом шаге только одна шашка сдвигается, т.е. один член последовательности меняется на 1. Докажем индукцией по n, что проходятся все последовательности из чисел 1..k. Случай n=1 очевиден. Пусть n>1. Все ходы поделим на те, где двигается последняя шашка, и те, где двигается не последняя. Во втором случае последняя шашка стоит у стены, и мы ее поворачиваем, так что за каждым ходом второго типа следует k-1 ходов первого типа, за время которых последняя шашка побывает во всех клетках. Если мы теперь забудем о последней шашке, то движения первых n-1 по предположению индукции пробегают все последовательности длины n-1 по одному разу; движения же последней шашки из каждой последовательности длины n-1 делают k последовательностей длины n.
В программе, помимо последовательности x[1]..x[n], будем хранить массив d[1]..d[n] из чисел +1 и -1 ( +1 соответствует стрелке вверх, -1 - стрелке вниз).
Начальное состояние: x[1]=...=x[n]=1 ; d[1]=...=d[n]=1.
Приведем алгоритм перехода к следующей последовательности (одновременно выясняется, возможен ли переход - ответ становится значением булевской переменной p ).
{если можно, сделать шаг и положить p := true, если нет, положить p := false } i := n; while (i > 1) and | (((d[i]=1) and (x[i]=n)) or ((d[i]=-1) and (x[i]=1))) | do begin | i:=i-1; end; if (d[i]=1 and x[i]=n) or (d[i]=-1 and x[i]=1) then begin | p:=false; end else begin | p:=true; | x[i] := x[i] + d[i]; | for j := i+1 to n do begin | | d[j] := - d[j]; | end; end;
Замечание. Для последовательностей нулей и единиц возможно другое решение, использующее двоичную систему. (Именно оно связывается обычно с названием "коды Грея".)
Запишем подряд все числа от до в двоичной системе. Например, для напишем:
Затем каждое из чисел подвергнем преобразованию, заменив каждую цифру, кроме первой, на ее сумму с предыдущей цифрой (по модулю ). Иными словами, число преобразуем в (сумма по модулю ). Для получим:Легко проверить, что описанное преобразование чисел обратимо (и тем самым дает все последовательности по одному разу). Кроме того, двоичные записи соседних чисел отличаются заменой конца на конец , что - после преобразования - приводит к изменению единственной цифры.
Применение кода Грея. Пусть есть вращающаяся ось, и мы хотим поставить датчик угла поворота этой оси. Насадим на ось барабан, выкрасим половину барабана в черный цвет, половину в белый и установим фотоэлемент. На его выходе будет в половине случаев , а в половине (т.е. мы измеряем угол "с точностью до ").
Сделав рядом другую дорожку из двух черных и белых частей и поставив второй фотоэлемент, получаем возможность измерить угол с точностью до :
Сделав третью,
мы измерим угол с точностью до и т.д. Эта идея имеет, однако, недостаток: в момент пересечения границ сразу несколько фотоэлементов меняют сигнал, и если эти изменения произойдут не совсем одновременно, на какое-то время показания фотоэлементов будут бессмысленными. Коды Грея позволяют избежать этой опасности. Сделаем так, чтобы на каждом шаге менялось показание лишь одного фотоэлемента (в том числе и на последнем, после целого оборота).
Написанная нами формула позволяет легко преобразовать данные от фотоэлементов в двоичный код угла поворота.
Заметим также, что геометрически существование кода Грея означает наличие "гамильтонова цикла" в -мерном кубе (возможность обойти все вершины куба по разу, двигаясь по ребрам, и вернуться в исходную вершину).
2.5.2. Напечатать все перестановки чисел 1..n так, чтобы каждая следующая получалась из предыдущей перестановкой (транспозицией) двух соседних чисел. Например, при n=3 допустим такой порядок:
(между переставляемыми числами вставлены точки).Решение. Наряду с множеством перестановок рассмотрим множество последовательностей y[1]..y[n] целых неотрицательных чисел, для которых , , . В нем столько же элементов, сколько в множестве всех перестановок, и мы сейчас установим между ними взаимно однозначное соответствие. Именно, каждой перестановке поставим в соответствие последовательность y[1]..y[n], где y[i] - количество чисел, меньших i и стоящих левее i в этой перестановке. Взаимная однозначность вытекает из такого замечания. Перестановка чисел 1..n получается из перестановки чисел 1..n-1 добавлением числа n, которое можно вставить на любое из n мест. При этом к сопоставляемой с ней последовательности добавляется еще один член, принимающий значения от 0 до n-1, а предыдущие члены не меняются. При этом оказывается, что изменение на единицу одного из членов последовательности y соответствует транспозиции двух соседних чисел, если все следующие числа последовательности y принимают максимально или минимально возможные для них значения. Именно, увеличение y[i] на 1 соответствует транспозиции числа i с его правым соседом, а уменьшение - с левым.
Теперь вспомним решение задачи о перечислении всех последовательностей, на каждом шаге которого один член меняется на единицу. Заменив прямоугольную доску доской в форме лестницы (высота i -ой вертикали равна i ) и двигая шашки по тем же правилам, мы перечислим все последовательности y, причем i -ый член будет меняться как раз только если все следующие шашки стоят у края. Надо еще уметь параллельно с изменением y корректировать перестановку. Очевидный способ требует отыскания в ней числа i ; это можно облегчить, если помимо самой перестановки хранить функцию
т.е. обратное к перестановке отображение, и соответствующим образом ее корректировать. Вот какая получается программа:program test; | const n=...; | var | x: array [1..n] of 1..n; {перестановка} | inv_x: array [1..n] of 1..n; {обратная перестановка} | y: array [1..n] of integer; {y[i] < i} | d: array [1..n] of -1..1; {направления} | b: boolean; | | procedure print_x; | | var i: integer; | begin | | for i:=1 to n do begin | | | write (x[i], ' '); | | end; | | writeln; | end; | | procedure set_first;{первая: y[i]=0 при всех i} | | var i : integer; | begin | | for i := 1 to n do begin | | | x[i] := n + 1 - i; | | | inv_x[i] := n + 1 - i; | | | y[i]:=0; | | | d[i]:=1; | | end; | end; | | procedure move (var done : boolean); | | var i, j, pos1, pos2, val1, val2, tmp : integer; | begin | | i := n; | | while (i > 1) and (((d[i]=1) and (y[i]=i-1)) or | | | ((d[i]=-1) and (y[i]=0))) do begin | | | i := i-1; | | end; | | done := (i>1); {упрощение: первый член нельзя менять} | | if done then begin | | | y[i] := y[i]+d[i]; | | | for j := i+1 to n do begin | | | | d[j] := -d[j]; | | | end; | | | pos1 := inv_x[i]; | | | val1 := i; | | | pos2 := pos1 + d[i]; | | | val2 := x[pos2]; | | | {pos1, pos2 - номера переставляемых элементов; | | | val1, val2 - их значения; val2 < val1} | | | tmp := x[pos1]; | | | x[pos1] := x[pos2]; | | | x[pos2] := tmp; | | | tmp := inv_x[val1]; | | | inv_x[val1] := inv_x[val2]; | | | inv_x[val2] := tmp; | | end; | end; | begin | set_first; | print_x; | b := true; | {напечатаны все перестановки до текущей включительно; | если b ложно, то текущая - последняя} | while b do begin | | move (b); | | if b then print_x; | end; end.