Россия, Москва |
Методы аппаратной реализации нейрокомпьютеров
Оптическая реализация нейронных сетей
Мощность нейронной сети определяется большим количеством связей: отдельные элементы имеют относительно малые вычислительные мощности. Обеспечение требуемой связности в электронных цепях остается серьезной проблемой, особенно при реализации нейронных сетей с полным графом соединений. Электронные интегральные цепи являются существенно планарными с рельефностью, обусловленной множеством слоев.
Проблему связей можно решить при использовании оптических систем для реализации НС. Взаимное соединение нейронов с помощью световых лучей не требует изоляции между сигнальными путями: световые потоки могут пересекаться, не влияя друг на друга, и сигнальные пути могут располагаться в трех измерениях. Плотность путей передачи ограничена только размерами источников и детекторов. Все сигнальные пути могут работать одновременно, тем самым обеспечивая огромную скорость передачи данных.
В оптических НС величины оптических весов могут запоминаться в голограммах с высокой степенью плотности (до бит на куб. см.). Веса могут модифицироваться в процессе работы сети.
К сожалению, возникает множество практических проблем при попытках оптической реализации нейронных сетей. Оптические устройства имеют собственные физические характеристики, часто не соответствующие требованиям искусственных нейронных сетей. Хотя они в действительности пригодны для обработки изображений, все же изображения от оптических нейронных сетей, полученные до настоящего времени, были разочаровывающе плохими. Однако достаточно взглянуть на первые пробы телевизионных передач, чтобы понять, какой огромный прогресс возможен в повышении качества изображения. Несмотря на эти трудности, а также на такие проблемы, как стоимость, размеры и критичность к ориентации, потенциальные возможности оптических систем побуждают попытки проведения интенсивных и широких исследований. В этой области происходят стремительные изменения, и в ближайшее время ожидаются важные улучшения.
Конфигурации оптических НС в основном подразделяются на две категории: векторно-матричные умножители и голографические корреляторы.
Векторно-матричные умножители
В качестве матрицы весов (рис. 3) используется фотопленка, у которой прозрачность каждого квадрата пропорциональна весу. Выход каждого фотодетектора является сверткой между входным вектором и соответствующим столбцом матрицы весов. Умножение выполняется параллельно. При использовании соответствующих высокоскоростных светодиодов и фотодетекторов умножение вектора на матрицу может быть выполнено менее, чем за наносекунду. Более того, скорость умножения практически не зависит от размерности массива. Это позволяет наращивать сети без существенного увеличения времени вычислений. Возможность менять веса основана на использовании жидкокристаллического клапана вместо фотографического негатива.
Голографические корреляторы
В голографических корреляторах образцы изображений запоминаются в виде голограммы (плоской или объемной) и восстанавливаются при когерентном освещении в петле обратной связи.
Входное изображение (возможно, зашумленное или неполное) коррелируется оптически одновременно со всеми запомненными изображениями. Корреляции обрабатываются пороговой функцией и подаются на вход системы, где наиболее сильные корреляции усиливают (и, возможно, корректируют или завершают) входное изображение. Этот процесс повторяется многократно, и усиленное изображение при каждом проходе изменяется, пока система не стабилизируется на требуемом изображении.
Оптические нейронные сети предлагают огромные выгоды с точки зрения скорости и плотности внутренних связей. Они могут быть использованы (в той или иной форме) для реализации сетей фактически с любой архитектурой.
В настоящее время ограничения электронно-оптических устройств создают множество серьезных проблем, которые должны быть решены прежде, чем оптические нейронные сети получат широкое применение. Однако, учитывая, что большое количество превосходных исследователей работает над этой проблемой, а также большую поддержку со стороны военных, можно надеяться на быстрый прогресс в этой области.