Россия, Москва |
Введение в нейрокомпьютерные системы
Введение
Нейронные сети - новая модель параллельных и распределенных вычислений, один из основных архитектурных принципов построения машин 6-го поколения. В основу искусственных нейросетей положены следующие черты живых нейросетей, позволяющие им справляться с нерегулярными задачами:
- простой обрабатывающий элемент - нейрон;
- участие огромного числа нейронов в обработке информации;
- каждый нейрон связан с большим числом других (глобальные связи);
- изменяющиеся по весу связи между нейронами;
- массовый параллелизм обработки информации.
Сети, обладающие этими свойствами, принадлежат к классу коннекционистских моделей обработки информации. Основная их черта - использование взвешенных связей между обрабатывающими элементами как средства запоминания информации. Обработка ведется одновременно большим числом элементов, где каждый нейрон связан с большим числом других, поэтому нейронная сеть устойчива к неисправностям и способна к быстрым вычислениям. Задать нейронную сеть для решения конкретной задачи — значит определить:
История и перспективы развития нейрокомпьютеров
На заре вычислительной техники (конец 1940-х начало 1950-х годов) существовало два подхода к разработке машин с "интеллектуальным" поведением.
Первый из подходов заключался в: 1) представлении знаний в виде множества атомных семантических объектов или символов; 2) манипуляциях с этим множеством символов по формальным алгоритмическим правилам. Эта символьно-алгоритмическая парадигма является основой так называемого традиционного искусственного интеллекта.
Одновременно с этим существовало другое направление исследований, использующее машины, архитектура которых моделировала мозг животных и обучалась под воздействием окружающей среды, а не программировалась каким-либо языком высокого уровня. Работы по так называемым нейронным сетям активно велись в 1960-х годах, затем утратили популярность в 1970-х и начале 1980-х, но во второй половине 1980-х возникла новая волна интереса к ним.