Кто вас учил так составлять тесты? |
Информационные технологии в различных областях деятельности
Медицина
Долгие века врач для определения причины болезни мог доверять только своим рукам, глазам и ушам, своим чувствам, с помощью которых он обследовал больного. Первыми приборами, которые стали помогать врачу при осмотре, были стеклянный ртутный термометр для определения температуры тела, секундомер для подсчета пульса и деревянная слуховая трубка - стетоскоп - для прослушивания сердца, изобретенный французским врачом Рене Ланно в 1819 году.
Позднее стетоскоп сменил фонендоскоп с чувствительной мембраной, камера под которой соединена с двумя гибкими трубками. Затем ко всему этому прибавились химические анализы состава крови и мочи.
В 1860 году итальянский врач Ривароччи придумал простой и удобный метод измерения артериального давления. Он основан на измерении внешнего давления, которое нужно для полного пережатия артерии. Для этого накладывают на руку выше локтя полую резиновую манжету и соединяют ее с резиновой грушей и манометром (ртутным или стрелочным). С помощью груши закачивают в манжету воздух и одновременно следят за пульсом на артерии предплечья (у локтевого сгиба) и за показаниями манометра. Давление воздуха увеличивают до тех пор, пока не исчезнет пульс, то есть пока не будет полностью пережата артерия. Измеренное в этот момент давление воздуха в манжете соответствует систолическому давлению. В 1905 году русский врач Н.С. Коротков усовершенствовал метод Ривароччи. Он предложил прослушивать пульс фонендоскопом. Это позволило измерять не только систолическое, но и диастолическое давление крови (то есть, соответственно, при сокращении и расслаблении сердечной мышцы).
Современные автоматические цифровые тонометры (рис. 12.1) оснащены миниатюрным воздушным насосом и датчиком давления в манжете. Резиновая груша и фонендоскоп при измерении давления таким аппаратом не нужны. Надо только надеть манжету и нажать на кнопку аппарата. Он проделает весь цикл измерения и покажет цифрами на дисплее величины систолического (верхнего), диастолического (нижнего) давления и пульса. Выпускаются даже тонометры, манжета которых надевается на запястье или на палец, но они, хотя и удобнее, не дают такой же точности измерения.
Открытие Вильгельмом Рентгеном (1845-1923) Х-лучей, названных его именем, дало врачам возможность "заглянуть" внутрь тела человека, не повредив его.
Рентгеновское обследование позволило увидеть теневое изображение костей и внутренних органов. Появление рентгеновского аппарата вызвало к жизни новую область медицины - рентгенологию, изучающую применение рентгеновского излучения для исследования строения и функций органов и систем организма человека. В нее вошли рентгенодиагностика - для установления диагноза заболевания и рентгенотерапия - для лечения. Стал широко применяться такой метод рентгенодиагностики как флюорография: фотографирование теневого изображения с просвечивающего экрана на фотопленку небольших размеров для выявления заболеваний легких при массовых обследованиях. При флюорографии человек получает значительно меньшую дозу облучения, чем при рентгеноскопии (осмотре больного под рентгеновскими лучами) и при рентгенографии (получении рентгеновских снимков).
С середины XX века начали применять электрокардиографию - метод исследования сердечной мышцы, основанный на регистрации биоэлектрических потенциалов работающего сердца. Записанная на движущейся бумажной ленте или фотопленке прибора - электрокардиографа кривая - электрокардиограмма (ЭКГ) используется для диагностики заболеваний сердца.
Сокращению сердечной мышцы предшествует ее возбуждение, во время которого меняются физико-химические свойства мышечного волокна сердца - миокарда. Это сопровождается появлением электрического тока, который может быть зарегистрирован. Разные отделы сердца (предсердия и желудочки) сокращаются и расслабляются последовательно в разное время. Поэтому биоэлектрические явления, обусловленные их деятельностью, также регистрируются последовательно.
В наше время электрокардиография остается одним из основных методов исследования сердца и диагностики заболеваний сердечно-сосудистой системы. Однако для грамотной расшифровки электрокардиограммы необходимо знание природы кардиографической кривой, поэтому расшифровку следует проводить только специалистам с опытом подобной работы. В последние годы нашла применение компьютерная электрокардиография, в которой расшифровка электрокардиограммы (ЭКГ) осуществляется компьютером.
Для постоянного наблюдения (так называемого мониторинга) за состоянием сердечно-сосудистой системы выпускаются суточные мониторы артериального давления и ЭКГ (рис. 12.2).
Для исследования биоэлектрической активности головного мозга применяется электроэнцефалография: графическая регистрация потенциалов головного мозга прибором - электроэнцефалографом. Записываемая при этом кривая - электроэнцефалограмма - используется в исследовательских и диагностических целях.
Все более широкое применение в медицине находит ультразвуковая диагностика - использование ультразвуковых колебаний для распознавания заболеваний мозга (эхоэнцефалография), сердца (эхокардиография), исследования плода и т. д. Такая диагностика основана на свойстве ультразвуковых волн отражаться от границ, разделяющих среды. Это позволяет видеть контуры внутренних органов и различать образования с различной плотностью.
Ультразвуковое исследование (УЗИ) применяется для диагностики заболеваний мозга (эхоэнцелография), сердца (эхокардиография), исследования плода и т.д.
Широко используется УЗИ для диагностики болезней органов брюшной полости, например, желчно-каменной болезни. А определение пола будущего ребенка с помощью ультразвука стало обыденной процедурой. Аппараты УЗИ есть даже на станциях московского метро.
"Заглянуть" в такие внутренние органы, как пищевод, желудок, мочевой пузырь, бронхи дает возможность эндоскоп. Это оптический прибор, который вводится внутрь исследуемого органа. Он представляет собой световод - тонкий гибкий пучок стеклянных волокон из специального оптического стекла. Этот световод освещает внутреннюю поверхность органа и передает его изображение на экран телевизора или в фотокамеру.
В конце 1960-х годов начали использовать томографию (от греч. tomos - ломоть, слой и grapho - пишу), метод неразрушающего послойного исследования внутренней структуры объекта, например мозга. Оно осуществляется с помощью многократного просвечивания в различных пересекающихся направлениях, число которых достигает 10-106 (так называемое сканирующее просвечивание). По виду излучения различают электромагнитную томографию (рентгеновскую, гамма-томографию и магнитную или ядерно-магнитно-резонансную (ЯМР), пучковую томографию (например, протонную), а также ультразвуковую и др. С помощью томографии получают изображения слоев толщиной до 2 мм. Обработку сигналов осуществляют на компьютере: это так называемая компьютерная томография. Томография используется в медицинской диагностике и других областях науки и техники. В медицине благодаря своей высокой точности наибольшее применение получила ядерно-магнитная томография (ЯМР), использующая диапазон сверхвысоких частот. Однако компьютерная и ядерно-магнитная томография имеют побочные эффекты и применяются строго по показаниям.
Еще один метод томографии - магнитно-резонансный. Он позволяет сканировать любую часть тела в нужном направлении. Основная задача медиков при постановке диагноза - определить места уплотнений, разрежений, кровяных сгустков в ткани. Магнитно-резонансная томография позволяет это сделать. За ее разработку Пол Лотербур (США) получил Нобелевскую премию по физиологии и медицине в 2003 году. После математической обработки сигналы от магнитно-резонансного томографа превращаются в изображение на экране компьютера. Через несколько секунд врач может увидеть, как выглядит больной орган. Этот метод разработал второй нобелевский лауреат по физиологии и медицине в 2003 году Питер Мэнсфилд (Великобритания). С помощью магнитно-резонансной томографии можно с высокой вероятностью диагностировать злокачественные опухоли, воспалительные процессы, кисты, инсульты, рассеянный склероз, болезнь Альцгеймера, вывихи, переломы, смещение межпозвонковых дисков.
За последние годы значительно улучшилась техника и сократилось время получения четкого рентгеновского изображения. Этого удалось достичь благодаря использованию электронно-оптических усилителей и высокочувствительных датчиков. При компьютерной томографии излучатель движется вокруг биологического объекта, формируя множество отдельных рентгенограмм. Полученные изображения исследуемой области организма поступают в компьютер, где подвергаются обработке. В результате получается компьютеризированный срез человеческого тела с четкой прорисовкой всех деталей или стереоскопическое изображение исследуемой области.
До недавнего времени рентгеновские компьютерные томографы использовались только для исследования головного мозга. Это было связано с большим временем получения томограмм (4-6 мин) и с малым диаметром зоны томографирования (24 см). Незначительные естественные движения человека во время исследования (например, дыхание) приводили к значительным помехам в формировании изображения. В современных томографах время томографирования снижено до 1-3 с, а диаметр зоны исследования доведен до 70 см. Это позволило исследовать любую область человеческого тела и свести до минимума помехи от непроизвольных движений пациента.
Все эти современные методы позволили "заглянуть" в организм человека, не разрушая его. Для этого нет нужды ждать, пока "вскрытие покажет", как говорилось в мрачной медицинской шутке.
Теперь - о молекулярной медицине, эпоха которой наступила в начале XXI века в результате поразительных успехов, достигнутых генетикой и генной инженерией.
Молекулярная медицина - это диагностика, лечение и профилактика наследственных и ненаследственных болезней на генном уровне. Она сможет выявить генетическую предрасположенность человека к различным болезням, проводить лечение наследственных и ненаследственных заболеваний на генном уровне. При этом в качестве лекарственного препарата будут выступать гены. Генная терапия не только устраняет определенные симптомы болезни, но и корректирует функции клеток и всего организма. Ее терапевтический эффект может достигаться заменой "больного" гена на "здоровый", коррекцией его структуры и функции, частичным или полным его подавлением.
Днем рождения реальной генной терапии может считаться 14 сентября 1990 года. В этот день было благополучно завершено лечение 4-летней девочки, родившейся с редким заболеванием - первичным иммунодефицитом. Любая детская болезнь могла убить ее в первые месяцы или годы жизни. Ученые национального института здоровья США забрали клетки иммунной системы девочки, ввели в них с помощью вирусов нормальные человеческие гены, которых ей недоставало, и вернули их в организм ребенка. Вскоре эту процедуру провели еще одной 9-летней девочке. В следующие два года детям проводили такую процедуру еще 12 раз. И хотя она не принесла девочкам полного излечения, перестроенные клетки выживают и производят необходимый больным недостающий фермент.
Существует два способа введения генетической информации в организм больного.
В первом из них, как в случае с американскими девочками, клетки извлекают из организма, вводят в них необходимый ген и снова возвращают. Эти клетки для организма "свои", иммунная система их не отторгает, и они затем синтезируют необходимый продукт, которого не хватало организму.
Другой способ - доставка генов прямо в организм. Чаще всего для доставки используют измененные и поэтому безопасные для организма вирусы, к которым "приклеивают" необходимые гены или их фрагменты.