Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики
Опубликован: 19.01.2015 | Доступ: свободный | Студентов: 2194 / 821 | Длительность: 10:34:00
Лекция 11:

Измерение формы и спектра сигналов

< Лекция 10 || Лекция 11: 1234 || Лекция 12 >

Общие сведения

Радиотехнические сигналы при взаимодействии друг с другом или с помехой, а также проходя через устройства, содержащие нелинейные элементы, претерпевают изменение формы и спектра. При взаимодействии сигналов возникает модуляция и значение искажений необходимо измерять форму сигнала и его спектр.

Измерение спектра предусматривает определение большого числа гармонических составляющих, которое при исследовании непериодических сигналов стремится к бесконечности.

Спектральная функция импульсного сигнала х(t) представляет собой комплексную функцию вида

S(\omega)=\int\limits_{-\infty}\limits^{+\infty}x(t)e^{-j\omega t}dt. ( 10.1)

Измерения выполняются в течение некоторого интервала времени T, поэтому формула (10.1) преобразуется в следующую:

S_{T}(\omega)=\int\limits_{0}\limits^{T}x(t)e^{-j\omega t}dt ( 10.2)

Из рассмотрения формулы (10.2) видно, что измеряемый спектр является функцией частоты и интервала времени измерения. Функцию $S_{T}(\omega)$ называют текущим спектром сигнала. Очевидно, что с увеличением интервала времени измерения текущий спектр приближается к истинному.

Для определения спектра периодического несинусоидального сигнала необходимо измерить амплитуды и частоты его гармонических составляющих. Для этой цели применяют приборы – анализаторы гармоник и анализаторы спектра – как с ручным управлением, так и автоматические. Гармонические составляющие можно измерять поочередно или одновременно; первый способ анализа спектра называют последовательным, а второй – параллельным.

Основными характеристиками анализаторов являются разрешающая способность и время анализа. Разрешающая способность $\Delta f_{p}$ определяется минимальным расстоянием по оси частот, при котором можно выделить и измерить с заданной погрешностью две соседние составляющие спектра. Разрешающая способность прямо пропорциональна полосе пропускания фильтра $\Delta f_{ф}$ избирательного контура (рис. 10.1 рис. 10.1):

\Delta f_{p}=q\Delta f_{ф}, ( 10.3)

где $q>1$.

 К определению связи разрешающей способности с полосой пропускания фильтра

Рис. 10.1. К определению связи разрешающей способности с полосой пропускания фильтра

В автоматических анализаторах на разрешающую способность влияют переходные процессы. Время, в течении которого характеристика анализатора приближается к его статистической, называют временем установления $t_{у};t_{у}=\dfrac{a}{(\Delta f_{ф})};c$ , где a – коэффициент, близкий к единице; значение a зависит от типа применяемого избирательного контура или фильтра.

Время анализа анализаторами параллельного действия соизмеримо со временем установления:

T_{пар}\approx t_{у}=\dfrac{a}{\Delta f_{ф}}=\dfrac{aq}{\Delta f_{p}},c. ( 10.4)

Скорость анализа определяется отношением рабочего диапазона частот анализатора fраб (рис. 10.1 рис. 10.1) к времени анализа:

\nu_{пар} \approx \dfrac{f_{раб}}{T_{пар}}=\dfrac{f_{раб}\Delta f_{ф}}{a}. ( 10.5)

Обозначив $f_{раб}=k\Delta f_{p}$, где $\Delta f_{p}$ – разрешающая способность резонатора, определяемая формулой (10.3), получаем выражение для скорости параллельного анализа

\nu_{пар}=\dfrac{k}{aq}\Delta f_{p}^{2}.

Скорость последовательного анализа определяется уравнением $\nu_{посл}=\dfrac{\Delta f_{p}}{t_{у}}$ или, с учетом ранее приведенных соотношений,

\nu_{посл}=\Delta f_{p}\Delta f_{ф}/a=\dfrac{1}{aq}\Delta f_{p}^{2}.

В этом случае время анализ

T_{посл}=f_{рав}/\nu_{посл}=kaq\Delta f_{p}, ( 10.6)

т.е. оно в k раз больше, чем при параллельном анализе.

< Лекция 10 || Лекция 11: 1234 || Лекция 12 >
Егор Панькин
Егор Панькин

Когда планируется закончить наполнение третьего модуля прогрумы?

Николай Коновалов
Николай Коновалов

Здравствуйте, интересует проф переподготовка по направлению Комплексная защита объектов информации, объясните пожалуйста какая стоимость, какие нужны документы и куда их направлять?

Виктория Петрова
Виктория Петрова
Россия
Галина Дранникова
Галина Дранникова
Россия, Зеленоград