Опубликован: 15.05.2007 | Доступ: свободный | Студентов: 7909 / 2205 | Оценка: 4.29 / 4.06 | Длительность: 11:41:00
Специальности: Фотограф
Лекция 4:

Сенсоры цифровых фотоаппаратов

< Лекция 3 || Лекция 4: 123 || Лекция 5 >
Аннотация: Матрица светочувствительных элементов - основной узел цифрового фотоаппарата. Понять принцип его работы - понять принцип самой цифровой фотографии. В этой маленькой по физическим размерам микросхеме средоточие современных высоких технологий.

Цель лекции - рассказать об устройстве и принципе действия сенсоров CMOS и CCD. Здесь же подробно рассматриваются важнейшие характеристики светочувствительных сенсоров.

Качественный уровень современного цифрового фотоаппарата определяется, прежде всего, техническим совершенством установленного в нем сенсора - матрицы светочувствительных элементов. Это самая дорогая и наиболее значимая деталь цифровой камеры.

Сенсор CCD цифрового фотоаппарата

Рис. 4.1. Сенсор CCD цифрового фотоаппарата

На сегодняшний день в производстве светочувствительных сенсоров применяются две конкурирующие технологии. Первая, более простая в производстве и по ряду признаков более перспективная - технология CMOS ( Complementary Metal-Oxide-Semiconductor ). В переводе эта технология называется КМОП - комплементарный металл-оксид-полупроводник. В силу разных причин сенсоры, построенные по технологии CMOS, устанавливаются в фототелефоны и в зеркальные камеры Canon и Sony.

Лидирующей на рынке цифровой фототехники является технология CCD ( Charge-Coupled Device ). В русском переводе этот тип сенсоров называется ПЗС - прибор с зарядовой связью. Более трудоемкие в производстве, сенсоры CCD, тем не менее, установлены в подавляющем большинстве цифровых фотоаппаратов любительского и профессионального класса.

В упрощенном виде принцип действия матрицы светочувствительных элементов цифрового фотоаппарата выглядит следующим образом. Сенсор CCD состоит из подложки, изготовленной из монокристаллического полупроводникового материала, изолирующего слоя окисла, покрывающего подложку, и набора микроскопических (микронных размеров) металлических проводников -электродов. К электродам матрицы подводится электрический ток. Засветка поверхности матрицы приводит к тому, что сила тока (заряд) на выводах электродов изменяется, то есть каждая ячейка светочувствительной матрицы реагирует на интенсивность засветки. Эти изменения считываются электронной схемой фотоаппарата, и на их основе строится картинка, соответствующая сфокусированному на поверхности сенсора изображению.

Ячейки матрицы, построенной по технологии CMOS, это полевые транзисторы, которые при засветке изменяют свое состояние, препятствуя прохождению электрического тока через выводы ячейки или, наоборот, усиливая сигнал. Электронная схема фотоаппарата считывает изменения состояния ячеек матрицы и на их основе строит картинку.

Матрицы CMOS по сравнению с матрицами CCD отличаются пониженным энергопотреблением и высокой технологичностью. С другой стороны, разрешение матриц CMOS, их светочувствительность, динамический диапазон и устойчивость к шумам ниже, чем у матриц CCD. Это объясняется сложностью устройства, а также пониженной светочувствительностью полевых транзисторов по сравнению с ячейками с зарядовой связью.

Устанавливаемые в сотовые камерофоны сенсоры CMOS выполнены в виде большой гибридной микросхемы, на кристалле которой смонтированы многие сервисные схемы встроенного в телефон фотоаппарата. Это и аналого-цифровой преобразователь ( АЦП ), и электронный затвор (схема мгновенного считывания состояния матрицы), схемы баланса белого и сжатия изображений. В массовом производстве CMOS-сенсоры оказываются дешевле, поскольку каждый элемент матрицы крупней, чем ячейка сенсора CCD. А простейшим камерам на основе CMOS-сенсоров не нужны многие вспомогательные электронные механизмы. По сути недавно еще популярная, а сегодня сошедшая со сцены дешевая веб-камера с функцией автономной работы в качестве цифрового фотоаппарата состоит из корпуса, батарейного блока питания, простого объектива, небольшого набора пассивных элементов (согласующих резисторов, порта USB, пары кнопок), монохромного символьного дисплея и одной микросхемы, на которую возложена вся работа по оцифровке и обработке изображений. Отсюда и чрезвычайно низкая цена подобных фотокамер.

Говоря о перспективах сенсоров CMOS, не стоит забывать, что это очень молодая технология. Она возникла, как альтернатива трудоемкой и малоэффективной технологии сенсоров CCD. Достаточно сказать, что выход годной продукции при массовом производстве матриц CCD еще шесть-семь лет назад находился на уровне двух процентов. Сказываются размеры элементов (порядка тысячных долей миллиметра) и очень высокие требования к технологическим допускам.

В то же время, конструкторы зеркальных цифровых фотоаппаратов Canon и просьюмерок Sony (пример - камера Sony DSC-R1) устанавливают в свои фотоаппараты именно сенсоры CMOS, дополняя их специальными схемами подавления шумов. Еще одна положительная сторона матриц CMOS - их стабильность и долговечность. Причина, опять же, в применении в качестве светочувствительных элементов полевых транзисторов, в более крупных размерах каждого элемента и в высокой технологичности массового производства...

Микроскопические ячейки светочувствительной матрицы способны отреагировать только на силу попадающего на них света (на интенсивность светового потока). Для того, чтобы получить изображение, приближающееся по качеству к пленочному фотоснимку, цифровой фотоаппарат должен распознавать еще и цветовые оттенки.

Но прежде чем говорить о технологии оцифровки цветного изображения, следует заметить, что для увеличения точности работы матрицы (улучшения соотношения сигнал/шум) и повышения светочувствительности, каждая ячейка снабжается собирающими микролинзами, фокусирующими световой поток. Особенно это касается матриц CMOS, где без подобных линз необходимого качества изображения добиться трудно.

Получить цветное изображение, и мы об этом уже говорили, можно разными способами. В профессиональной съемочной аппаратуре применяется схема с тремя светочувствительными матрицами. Сфокусированное объективом изображение расщепляется специальной призмой на три идентичных световых потока, каждый из которых засвечивает свою матрицу через светофильтр одного из базовых цветов - красного, зеленого и голубого (RGB - Red, Green, Blue). Эта технология позволяет добиться высокого качества цветопередачи, но усложняет конструкцию камеры и отражается на ее стоимости. Чаще всего три матрицы устанавливаются в дорогих цифровых видеокамерах.

В фотоаппаратах же (кроме профессиональных камер специального назначения) используется другая технология - с одним сенсором. Над поверхностью сенсора установлен блок микроскопических светофильтров, расположенных в шахматном порядке в соответствии с цветовой моделью Байера. Этот алгоритм построения цветного изображения подразумевает удвоенное количество зеленых фильтров по сравнению с красными и синими, поскольку человеческий глаз более чувствителен к зеленой части светового спектра. Цветное изображение строится электроникой камеры уже после преобразования аналогового электрического сигнала, снимаемого с ячеек сенсора камеры в цифровой код аналого-цифровым преобразователем АЦП (если говорить о сенсорах CCD, сенсоры CMOS сами могут обрабатывать цветовую составляющую сигнала, поскольку обычно это большие многофункциональные микросхемы).

< Лекция 3 || Лекция 4: 123 || Лекция 5 >
Марина Варавина
Марина Варавина

Материал катастрофически устарел (11 лет для цифровой техники), кроме того избыточна приверженность автора к пленке, что очень чувствуется в повествовании, материал часто субъективен.

Оксана Орлова
Оксана Орлова

как давно обновлялся материал в лекциях курса "цифровые фотоаппараты"? в лекции 2 очень много устаревшей, неактуальной информации!