Опубликован: 25.12.2006 | Уровень: специалист | Доступ: платный
Лекция 1:

Введение. Компьютеры и Мозг

Лекция 1: 12345 || Лекция 2 >

Как мозг обрабатывает информацию

Из чего построен мозг

Мозг построен из клеток двух типов: глиальных и нейронов. И хотя роль глии в его работе, видимо, довольно значительна, большинство исследователей полагает, что в основном понимание работы мозга может быть достигнуто при изучении нейронов, объединенных в единую связанную сеть. Эта парадигма и используется при построении, изучении и применении искусственных нейронных сетей, которым посвящена эта книга.

Следует, однако, заметить, что имеются и другие точки зрения. В частности, такие ученые как Пенроуз и Хамерофф считают, что главные события происходят не в нейронной сети, а в самих клетках, а именно в их цитоскелетоне, в так называемых микротрубочках. Согласно их точке зрения, и память, и даже сознание определяются конформационными изменениями белков во внутриклеточных структурах и связанными с ними квантовыми эффектами.

Количество нейронов в мозге оценивается величиной 1010-1011. Типичные нейроны имеют тело клетки (сому), множество ветвящихся коротких отростков - дендритов и единственный длинный и тонкий отросток - аксон. На конце аксон также разветвляется и образует контакты с дендритами других нейронов - синапсы рис. 1.1.

Схема нейрона и межнейронного взаимодействия

Рис. 1.1. Схема нейрона и межнейронного взаимодействия

Внутриклеточное пространство нейрона имеет отрицательный электрический потенциал по отношению к внеклеточному (-70 mV), то есть клетка в целом поляризована. Поляризация возникает за счет избирательной проницаемости клеточной мембраны для ионов натрия и калия, приводящей к разнице их концентраций внутри и вне клетки. Однако, если внешним образом достаточно сильно изменить потенциал мембраны одного нейрона (передатчика) вблизи выхода аксона из его клеточного тела, то проницаемость мембраны меняется и перераспределение ионов во внутриклеточном и внеклеточном пространстве аксона приводит к распространению по нему волны кратковременной деполяризации. Электрический импульс, распространившись по всем ветвлениям окончания аксона со скоростью около 100 м/с, достигает синапсов, расположенных в местах его контакта с дендритами или сомой других клеток. Под воздействием этого импульса в синапсах выделяются специальные химические вещества - нейромедиаторы, которые, пересекая синаптическую щель, взаимодействуют с мембраной нейрона-приемника и изменяют ее потенциал. Таким образом воздействие передается от одного нейрона к другим. Заметим, что это воздействие может являться как возбуждающим - способствующим дальнейшей генерации волны деполяризации в нейроне-приемнике, так и ингибирующим - препятствующим такой генерации. Тип воздействия определяется химической природой нейромедиатора, выделяющегося в синапсе.

После генерации импульса нейрон некоторое время (период рефрактерности) не может активироваться. Поэтому частота, с которой нейрон может генерировать импульсы ограничивается примерно 100 Гц.

Каждый из нейронов устанавливает синаптические связи в среднем с 104 другими нейронами. Поэтому число связей в мозге оценивается в 1014 -1015. Очень грубо можно считать, что нейроны мозга могут находиться в двух состояниях - возбужденном (когда они предают свое воздействие другим нейронам) и покоящемся (когда такой передачи нет).

До сих пор неизвестно, каким кодом пользуется нервная система для передачи взаимодействия. Может быть, он является бинарным, и значение имеют указанные состояния нейронов. Возможно, важна частота электрической активности нейронов, кодирующая интенсивность сигнала. Например, у нейронов коры эта частота может быть пропорциональна вероятности некоторого события. Наконец, информация может содержаться не в импульсных процессах, а в более медленных изменениях потенциала мембраны, которые не всегда активируют клетку (т.е. не превышают порога активации). Однако при любом предположении модель сети взаимодействующих нейронов оказывается исключительно богатой и обладающей свойствами, которые можно сопоставить с реальными возможностями мозга.

Структура и функции мозга

Мозг управляет организмом в целом, его восприятием окружения, движением, поддержанием важнейших функций жизнедеятельности, оперативно реагируя на всевозможные изменения среды. Генетическая программа организма, конечно, тоже способна адаптироваться к изменяющимся условиям, но очень медленно, за счет крайне редких полезных мутаций. Если использовать только этот способ, то необходимо производить огромное потомство, только малая часть которого выживает. Этим методом пользуются низшие формы жизни - такие как бактерии и вирусы. Высшие же формы в ходе эволюции выработали у себя способность к изменению и адаптации в течение жизни - благодаря особому свойству своей нервной системы - пластичности. Поэтому у высших животных потомство немногочисленно, зато мозг сильно развит.

Объем накопленной в мозге информации вначале дополнял, а затем и превзошел (у рептилий и млекопитающих) объем наследственной информации, закодированной в ДНК (см. рис. 1.2 ). Можно сказать, что генетическая информация у высших организмов исполняет роль ракеты-носителя, направляя процесс построения организма. Затем управление передается адаптирующейся к внешнему миру нервной системе, вершиной которой и является мозг.

Сравнение наследственной и приобретенной информации для различных видов организмов

Рис. 1.2. Сравнение наследственной и приобретенной информации для различных видов организмов

В строении мозга как на фотографии запечатлен весь эволюционный путь его развития. Так, мозг человека фактически включает в себя три больших отдела, управляющие наиболее древней структурой (нейрошасси), доставшейся нам еще от рыб и амфибий, и ответственной за поддержание жизнедеятельности и размножение. Первый отдел - рептильный комплекс - возник несколько сот миллионов лет назад и помогает нам ориентироваться в пространстве. Второй отдел - лимбическая система - образовался около ста пятидесяти миллионов лет назад. Благодаря ей мы обладаем эмоциями. Наконец, последнее достижение - новая кора, особо развитая у человека, позволяет нам говорить и логически мыслить.

В фантастических романах прошлого человек будущего (или инопланетный гуманоид) иногда изображался как хилое существо с огромным мозгом. На самом деле, и при нынешних его размерах (примерно 5% от общего веса тела) мозг человека потребляет около 20% кислорода и, следовательно, энергии. При этом он обычно не задействован "на полную мощность": одновременно активны в нем лишь 2-3% нейронов . Благодаря такой избыточности, мозг человека обладает огромным запасом прочности, позволяющим ему работать даже несмотря на серьезные повреждения и утраты. Этой способности лишены современные компьютеры.

Известны случаи, когда человек продолжал сознательную жизнь после удаления большей части коры головного мозга. В одном из них, молодой человек, получивший в автокатастрофе травмы черепа, оцененные как несовместимые с жизнью, выжил, и, несмотря на удаление в ходе многочисленных операций большой части тканей мозга (включая обе лобных доли!), возвратился к работе директором коммерческого буфета. Известный пример проявления компенсаторных возможностей дает мозг Ленина. Для него были характерны многочисленные поражения коры левого полушария, отягощенные колоссальной нагрузкой (при письме) на управляемую им правую руку, и обращающие на себя внимание хорошо развитые слои клеток в правом полушарии.
Восприятие

В дополнение к эволюционному разделению частей мозга, о котором мы говорили выше, в нервной системе явно различаются три типа нейронных структур: сенсорные, внутренние и эффекторные. Первые связывают наш мозг с внешним миром и обеспечивают поступление в него зрительной, слуховой, вкусовой, обонятельной и осязательной информации. Есть у нас и шестое чувство - чувство равновесия, за которое отвечает вестибулярный аппарат. Его особенность заключается в том, что он не вынесен наружу. Эффекторные нейроны управляют мышцами, внутренними органами, стенками сосудов и пр. Мозг таким образом контролирует работу сердца, дыхание, кровяное давление, температуру, поддерживает нужное содержание кислорода в крови, осуществляет гормональную регуляцию и пр. Промежуточные нейроны обрабатывают информацию, получаемую от сенсорных и передаваемую эффекторным нейронам.

Существующие компьютерные системы позволяют вводить в них изображения, звуковую и другие виды информации. Однако, в отличие от компьютера, снабженного сканером, телекамерой и микрофоном, мозг обладает вниманием, свойством, которое позволяет ему сосредотачиваться на важной в данный момент информации и игнорировать несущественную. Эффективные системы предобработки сенсорной информации, вырабатываемые в течение жизни путем обучения, позволяют мозгу эффективно распознавать сенсорные образы - способность, пока мало освоенная современными компьютерами.

В восьмидесятые годы была объявлена программа создания компьютеров 5-го поколения. Эти компьютеры должны были иметь средства работы с реальными данными окружающего мира - изображениями, мелодиями, текстами и пр. Однако, как стало ясно теперь, полноценное решение этой задачи возможно только нейрокомпьютерами - системами, работа которых основывается на использовании архитектуры и свойств биологической нервной ткани.
Лекция 1: 12345 || Лекция 2 >
Дмитрий Степаненко
Дмитрий Степаненко
Россия
Ярославй Грива
Ярославй Грива
Россия, г. Санкт-Петербург