Опубликован: 30.03.2005 | Уровень: специалист | Доступ: платный | ВУЗ: Национальный исследовательский ядерный университет «МИФИ»
Лекция 14:

Архитектура персонального компьютера

< Лекция 13 || Лекция 14: 12

Представление данных в ЭВМ

Вся информация в ЭВМ хранится в виде наборов бит, то есть комбинаций 0 и 1. Числа представляются двоичными комбинациями в соответствии с числовыми форматами, принятыми для работы в данной ЭВМ, а символьный код устанавливает соответствие букв и других символов двоичным комбинациям.

Для чисел имеется три числовых формата:

  • двоичный с фиксированной точкой;
  • двоичный с плавающей запятой;
  • двоично-кодированный десятичный ( BCD ).

В двоичном формате с фиксированной точкой числа могут быть представлены без знака (коды) или со знаком. Для представления чисел со знаком в современных ЭВМ в основном применяется дополнительный код. Это приводит к тому, что, как показано ранее, отрицательных чисел при заданной длине разрядной сетки можно представить на одно больше, чем положительных. Хотя операции в ЭВМ осуществляются над двоичными числами, для записи их в языках программирования, в документации и отображения на экране дисплея часто используют более удобное восьмеричное, шестнадцатеричное и десятичное представление.

В двоично-кодированном десятичном формате каждая десятичная цифра представляется в виде 4 битного двоичного эквивалента. Существуют две основные разновидности этого формата: упакованный и неупакованный. В упакованном BCD -формате цепочка десятичных цифр хранится в виде последовательности 4-битных групп. Например, число 3904 представляется в виде двоичного числа 0011 1001 0000 0100. В неупакованном BCD -формате каждая десятичная цифра находится в младшей тетраде 8-битной группы (байте), а содержимое старшей тетрады определяется используемой в данной ЭВМ системой кодирования, и в данном случае несущественно. То же число 3904 в неупакованном формате будет занимать 4 байта и иметь вид:

xxxx0011 xxxx1001 xxxx0000 xxxx0100 .

Числа с плавающей запятой обрабатываются на специальном сопроцессоре ( FPU - floating point unit ), который, начиная с МП I486, входит в состав БИС микропроцессора. Данные в нем хранятся в 80-разрядных регистрах. Управляя настройками сопроцессора, можно изменять диапазон и точность представления данных этого типа (табл. 14.1).

Таблица 14.1.
Тип данных Размер (бит) Диапазон Обрабатывающий блок
Целые без знака
1 байт

1 слово

1 двойное слово

8

16

32

0...255

0...65535

0...4294967295

АЛУ
Целые со знаком
1 байт 8 -128...+127 АЛУ
1 слово 16 -32768...+32767 FPU
1 двойное слово 32 -2147483648...+2147483647
1 учетверенное слово 64 \approx ( 0.92*1019)
Числа с плавающей запятой
действительное число 32 (1+8+23) \approx ( 0.34*1039) FPU
с двойной точностью 64 (1+11+52) \approx ( 0.18*10309)
с увеличенной точностью 80 (1+15+64) \approx ( 0.12*104933)
Двоично-десятичные числа
1 байт неупакованное 8 0...9 АЛУ
1 байт упакованное 8 0...99 АЛУ
10 байт упакованное 80 0...(99...99)18цифр FPU

Организация оперативной памяти

ОП является основной памятью для хранения информации. Она организована как одномерный массив ячеек памяти размером в 1 байт. Каждый из байтов имеет уникальный 20 битный физический адрес в диапазоне от 00000 до FFFFFh (здесь и далее для записи адресов используется шестнадцатеричная система счисления, признаком которой является символ h в конце кода). Таким образом, размер адресного пространства ОП составляет 220 = 1Мбайт. Любые два смежных байта в памяти могут рассматриваться как 16-битовое слово. Младший байт слова имеет меньший адрес, а старший - больший. Так шестнадцатеричное число 1F8Ah, занимающее слово, в памяти будет расположено в последовательности 8Ah, 1Fh. Адресом слова считается адрес его младшего байта. Поэтому 20 битовый адрес памяти может рассматриваться и как адрес байта, и как адрес слова.

Команды, байты и слова данных можно размещать по любому адресу, что позволяет экономить память вследствие ее более полного заполнения. Однако для экономии времени выполнения программ целесообразно размещать слова данных в памяти, начиная с четного адреса, так как микропроцессор передает такие слова за один цикл работы шины. Слово с четным адресом называется выровненным по границе слов. Невыровненные слова данных с нечетным адресом допустимы, но для их передачи требуется два цикла шины, что снижает производительность ЭВМ. Заметим, что необходимое количество циклов считывания слова данных инициируется микропроцессором автоматически. Следует иметь в виду, что при операциях со стеком слова данных должны быть выровнены, а указатель стека инициирован на четный адрес, так как в таких операциях участвуют только слова данных.

Поток команд разделяется на байты при заполнении очереди команд внутри микропроцессора. Поэтому выравнивание команд практически не влияет на производительность и не используется.

Адресное пространство ОП делится на сегменты. Сегмент состоит из смежных ячеек ОП и является независимой и отдельно адресуемой единицей памяти, которая в базовой архитектуре персональной ЭВМ имеет фиксированную емкость 216 = 64К байт. Каждому сегменту назначается начальный (базовый) адрес, являющийся адресом первого байта сегмента в адресном поле ОП. Значение физического адреса ячейки складывается из адреса сегмента и смещения ячейки памяти относительно начала сегмента (внутрисегментное смещение). Для хранения значений адреса сегмента и смещения используются 16-битовые слова.

Чтобы получить 20-битовый физический адрес, микропроцессор автоматически осуществляет следующие операции. Значение базового адреса сегмента умножается на 16 (сдвиг на 4 разряда влево) и суммируется со значением смещения в сегменте (рис. 14.3). В результате получается 20-битовое значение физического адреса. При суммировании может возникнуть перенос из старшего бита, который игнорируется. Это приводит к тому, что ОП оказывается как бы организованной по кольцевому принципу. За ячейкой с максимальным адресом FFFFFh следует ячейка с адресом 00000h.

Схема получения физического адреса

Рис. 14.3. Схема получения физического адреса

Сегменты физически не привязаны к конкретному адресу ОП, и каждая ячейка памяти может принадлежать одновременно нескольким сегментам, так как базовый адрес сегмента может определяться любым 16-битовым значением. Сегменты могут быть смежными, неперекрывающимися, частично или полностью перекрывающимися. Вместе с тем, в соответствии с алгоритмом вычисления физического адреса, начальные адреса сегментов всегда кратны 16.

< Лекция 13 || Лекция 14: 12
Жаксылык Несипов
Жаксылык Несипов
Людмила Долгих
Людмила Долгих

Здравствуйте. В первой лекции курса "Логические и арифметические основы и принципы работы ЭВМу вас приведена классическая структурная схема ЭВМ. Если можно уточните, а как в классической архитектуре могла реализоваться прямая работа устройств ввода-вывода с оперативной памятью?  Если я правильно понимаю - это режим прямого доступа к памяти, в классической архитектуре он не предусмотрен.

Семён Огай
Семён Огай
Казахстан, Алматы
Виталий Лусников
Виталий Лусников
Россия, Киров, ВятГГУ, 2001