Численные методы решения экстремальных задач
Пусть тогда симметрично расположенная относительно центра отрезка точка имеет координату (рис. 4.1).
Пробная точка u1 отрезка [0, 1] перейдет в пробную точку нового отрезка Условием деления отрезков [0, 1] и в одном и том же отношении точками и является равенство
откуда находим положительный корень
т.е.
Для отрезка [a, b]
Замечания.
- Точки u1, u2 обладают следующим свойством: каждая из них делит отрезок [a, b] на две неравные части так, что отношение длины всего отрезка к длине его большей части равно отношению длин большей и меньшей части. Точки, обладающие таким свойством, называются точками золотого сечения, введенного Леонардо да Винчи.
- На каждой итерации отрезок поиска минимума уменьшается в одном и том же
отношении
поэтому в результате n итераций длина становиться равной
Следовательно, точность определения точки u* после n итераций равна
а условие окончания вычислительного процесса будет
Метод парабол.
Методы, использующие исключение отрезков, основаны на сравнении функций в двух точках пробного отрезка, учитываются лишь значения функции в этих точках.
Учесть информацию о значениях функции между точками позволяют методы полиномиальной аппроксимации. Их основная идея заключена в том, что функция аппроксимируется полиномом, а точка его минимума служит приближением к u*. Разумеется, в этом случае кроме свойства унимодальности (т.е. наличия единственного минимума на рассматриваемом отрезке), необходимо на наложить и требования достаточной гладкости для ее полиномиальной аппроксимации.
Для повышения точности поиска u* можно как увеличивать степень полинома, так и уменьшать пробный отрезок. Поскольку первый прием приводит к заметному увеличению вычислительной работы и появлению дополнительных экстремумов, обычно пользуются полиномами второй ( метод парабол ) или третьей (метод кубической интерполяции) степени.
Алгоритм поиска минимума состоит в следующем.
Выбираем на пробном отрезке три точки u1, u2, u3 такие, что u1 < u2 < u3 и
Построим параболу (квадратичный полином)
Q(u) = a0 + a1 (u - u1) + a2 (u - u1)(u - u2),
график которой проходит через точки (u1,f(u1)), (u2,f(u2)), (u3,f(u3)).
Коэффициенты ak, k = 1, 2, 3 находим из системы уравнений
Q(u1) = f(u1), Q(u2) = f(u2), Q(u3) = f(u3),
откуда
Точку минимума Q(u) находим, приравнивания его производную к нулю:
Далее полагаем: (очередное приближение точки минимума). Эту процедуру можно продолжить до достижения необходимой точности, выбирая новые точки uk, k = 1, 2, 3. Для этого можно использовать методы исключения отрезков, используя в качестве двух пробных точек u2 и таких, что u2,