Локальные компьютерные сети
Протоколы и технологии локальных сетей
В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня - Ethernet - рассчитан на топологию "общая шина", когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring - на топологию "звезда". При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени. Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ века, наряду с положительными имели и отрицательные последствия, главные из которых - ограничения по производительности и надежности.
Поскольку в ЛКС с простейшей топологией (общая шина, кольцо, звезда) имеется только один путь передачи информации - моноканал, производительность сети ограничивается пропускной способностью этого пути, а надежность сети - надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специ-альных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС (шина, кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.
Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети - с помощью других протоколов.
В развитии локальных сетей, кроме отмеченных, наметились и другие тенденции:
- отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;
- появление нового режима работы в ЛКС при использовании коммутаторов - полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах. Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС - физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.
В локальных сетях канальный уровень разделен на два подуровня:
- логической передачи данных (LLC - Logical Link Control);
- управления доступом к среде (МАС - Media Access Control).
Протоколы подуровней МАС и LLC взаимно независимы, т.е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC, и наоборот.
Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС, реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.
Протокол LLC. Для ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС. По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.
Технология Ethernet (стандарт 802.3). Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают большинство ЛКС. Имеется несколько вариантов и модификаций технологии Ethernet, составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Все эти варианты и модификации отличаются типом физической среды передачи данных.
Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде - метод случайного доступа CSMA/CD. Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и служит для передачи данных между любыми двумя узлами сети. Такой метод доступа носит вероятностный характер: вероятность получения среды передачи в свое распоряжение зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способ-ность резко падает.
Полезная пропускная способность сети - это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.
Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически.
Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:
- номинальная пропускная способность - 10 Мбит/с;
- максимальное число РС в сети - 1024;
- максимальное расстояние между узлами в сети - 2500 м;
- максимальное число коаксиальных сегментов сети - 5;
- максимальная длина сегмента - от 100 м (для 10Base-T) до 2000 м (для 10Base-F);
- максимальное число повторителей между любыми станциями сети - 4.
Технология Token Ring (стандарт 802.5). Здесь используется разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ, основанный на передаче станциям права на использование кольца в определенном порядке. Это право предается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером - от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.
В сетях Token Ring в качестве физической среды передачи данных применяется экранированная и неэкранированная витая пара и волоконно-оптический кабель. Сети работают с двумя битовыми скоростями - 4 и 16 Мбит/с, причем в одном кольце все РС должны работать с одной скоростью. Максимальная длина кольца - 4 км, а максимальное количество РС в кольце - 260. Ограничения на максимальную длину кольца связаны со временем оборота маркера по кольцу. Если в кольце 260 станций и время удержания маркера каждой станцией равно 10 мс, то маркер после совершения полного оборота вернется в активный монитор через 2,6 с. При передаче длинного сообщения, разбиваемого, например, на 50 кадров, это сообщение будет принято получателем в лучшем случае (когда активной является только РС-отправитель) через 260 с, что для пользователей не всегда приемлемо.
Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайтам для сетей 4 Мбит/с и 16 Кбайтам для сетей 16 Мбит/с.
В сетях 16 Мбит/с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера (ETR): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно, и в этом случае в каждый данный момент ге-нерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут лишь ретранслировать чужие кадры.
Технология Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM) существенно сложнее технологии Ethernet. В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций (активный монитор) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например, потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора выбирается новый активный монитор и процедура инициализации кольца повторяется.
Стандарт Token Ring изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU, т.е. устройствами многостанционного доступа. Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).
Для сетей Token Ring характерна звездно-кольцевая топология: РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующие кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).
Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии (HSTR), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.
Технология FDDI. Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель. Она появилась в 1988 г. и ее официальное название - оптоволоконный интерфейс распределенных данных (Fiber Distributed Data Interface, FDDI). В настоящее время в качестве физической среды, кроме волоконно-оптического кабеля, применяется неэкранированная витая пара.
Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.
Существует значительная преемственность между технологиями Token Ring и FDDI. Основные идеи технологии Token Ring восприняты и получили совершенствование и развитие в технологии FDDI, в частности, кольцевая топология и маркерный метод доступа.
В сети FDDI для передачи данных используются два оптоволоконных кольца, образующих основной и резервный пути передачи между РС. Станции сети подключаются к обоим кольцам. В нормальном режиме задействовано только основное кольцо. В случае отказа какой-либо части основного кольца оно объединяется с резервным кольцом, вновь образуя единое кольцо (это режим "свертывания" колец) с помощью концентраторов и сетевых адаптеров. Наличие процедуры "свертывания" при отказах - основной способ повышения отказоустойчивости сети. Существуют и другие процедуры для определения отказов в сети и восстановления ее работоспособности.
Основное отличие маркерного метода доступа к передающей среде, используемого в сети FDDI, от этого метода в сети Token Ring заключается в том, что в сети FDDI время удержания маркера является постоянной величиной только для синхронного трафика, который критичен к задержкам передачи кадров. Для асинхронного трафика, не критичного к небольшим задержкам передачи кадров, это время зависит от загрузки кольца: при небольшой загрузке оно увеличивается, а при большой - может уменьшаться до нуля. Таким образом, для асинхронного трафика метод доступа является адаптивным, хорошо регулирующим временные перегрузки сети. Механизм приоритетов кадров отсутствует. Считается, что достаточно разделить трафик на два класса - синхронный, который обслуживается всегда (даже при перегрузках кольца), и асинхронный, обслуживаемый при малой загрузке кольца. Станции FDDI применяют алгоритм раннего освобождения маркера, как это сделано в сети Token Ring со скоростью 16 Мбит/с.
В сети FDDI выделенный активный монитор отсутствует, все станции и концентраторы равноправны, при обнаружении отклонений от нормы они осуществляют повторную инициализацию сети и, если это не-обходимо, ее реконфигурацию.
Результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring приведены в табл.5.1.
Технологии Fast Ethernet и 100VG-AnyLAN. Обе эти технологии не являются самостоятельными стандартами и рассматриваются как развитие и дополнение технологии Ethernet, реализованное соответственно в 1995 и 1998 годах. Новые технологии Fast Ethernet (стандарт 802.3и) и 100VG-AnyLAN (стандарт 802.3z) имеют производительность 100 Мбит/с и отличаются степенью преемственности с классическим Ethernet.
В стандарте 802.3и сохранен метод случайного доступа CSMA/CD и тем самым обеспечена преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/с.
В технологии 100VG-AnyLAH используется совершенно новый метод доступа - Demand Priority (DP), приоритетный доступ по требованию. Эта технология существенно отличается от технологии Ethernet. Она поддерживает различные типы трафика в довольно узкой области и не нашла широкого распространения.
Отметим особенности технологии Fast Ethernet и ее отличия от технологии Ethernet: