Глава 1 << | | Введение | |
| |
Вводная лекция содержит приветствие автора курса и информацию об общей направленности курса, включая акцент на "живые" практические занятия в Mathcad. Автор подчеркивает, что курс относится к математическому анализу функции одной переменной и включает основы дифференциального и интегрального исчисления.
| - |
| |
Лекция посвящена основам аналитической геометрии: рассматривается уравнение прямой на плоскости, вводится понятие наклона прямой. Обсуждаются уравнения параллельных и перпендикулярных прямых.
| - |
| |
Рассматривается задача построения секущей через две точки графика некоторой функции. Обсуждается понятие касательной к графику, как предельного значения секущих, проходящих через две близкие точки графика.
| - |
| |
Приводится пример отыскания секущей и касательной для графика квадратичной функции.
| - |
| 30 минут |
| - |
|
Глава 2 << | | Производная функции | |
| |
Вводится определение производной функции в точке. Обсуждается равенство значения производной функции в точке наклону касательной к графику функции в этой точке. Выписывается уравнение касательной.
| - |
| |
Приводится пример вычисления производной функции f(x)=x^2+b в точке х=а (согласно определению производной, как предела). Обсуждается независимость производной от добавления к функции константы.
| - |
| |
Вводится определение правой и левой производных функции в точке, как правого и левого предела, соответственно. Приводится пример расчета правой и левой производных для кусочно-непрерывной функции.
| - |
| |
Лекция вводит понятие дифференциала, при помощи которого определяется дифференцируемость функций. Приводится пример всюду непрерывной, но нигде недифференцируемой функции Вейерштрасса.
| - |
| |
Приводится несколько физических примеров применения производной: расчет скорости и ускорения для объекта, свободно падающего в поле тяжести.
| - |
| 33 минуты |
| - |
|
Глава 3 << | | Предел функции | |
| |
В упрощенном варианте вводится понятие предела функции в точке. Обсуждается математический смысл предела (на примере серии графиков функции во все более мелком масштабе). Приводится пример вычисления предела функции в точке, в которой функция не определена.
| - |
| |
Рассматриваются правила определения пределов: предел суммы, разности, произведения, частного, а также предел сложной функции.
| - |
| |
Рассматривается решение нескольких задач по нахождению пределов (от степенной функции, полинома, рациональной дроби).
| - |
| |
Доказывается "лемма о сэндвиче", которая будет использоваться для вычисления нескольких пределов, имеющих ключевое значение.
| - |
| |
Вычисляются два тригонометрических предела.
| - |
| |
В заключительной лекции главы рассматривается вычисление бесконечных пределов.
| - |
| 30 минут |
| - |
|
Глава 4 << | | Непрерывность функций | |
| |
Дается определение непрерывности функции в точке, на интервале, на сегменте. Приводится несколько примеров непрерывных и разрывных функций. Подчеркивается, что для непрерывности функции в точке необходимо выполнение трех условий: существование функции в точке, предела функции в этой точке, и их
| - |
| |
Приводится несколько примеров разрывных функций и дается классификация точек разрыва: устранимые разрывы, разрывы 1-го и 2-го рода (в англоязычной литературе – removable, jump, infinite, essential).
| - |
| |
Доказывается теорема о непрерывности функции, дифференцируемой на интервале. Приводится пример неверности обратного утверждения.
| - |
| |
Обсуждается несколько примеров непрерывных и разрывных функций. Решаются типовые задачи, связанные с непрерывностью и классификацией точек разрыва.
| - |
| 30 минут |
| - |
|
Глава 5 << | | Правила дифференцирования | |
| |
Лекция посвящена простейшим правилам: вычисление производной функции-константы, произведения функции на константу, а также суммы и разности двух функций.
| - |
| |
При помощи определения производной функции выводятся формулы дифференцирования произведения и отношения двух функций.
| - |
| |
Пользуясь выведенными простейшими правилами дифференцирования, несложно получить формулы для вычисления производной степенной функции (с положительным и отрицательным целым показателем степени), а также полиномов.
| - |
| |
Рассматривается вопрос вычисления производных базовых тригонометрических функций (sin, cos). При помощи полученных результатов вычисляются производная тангенса.
| - |
| |
Рассматривается несколько примеров вычисления производных на основе доказанных правил дифференцирования (полинома, произведения, отношения, тригонометрических функций).
| - |
| 30 минут |
| - |
|
Глава 6 << | | Дифференцирование сложных и неявных функций | |
| |
Рассматривается вычисление производной сложной функций, называемое в англоязычной литературе "chain rule" ("правило цепочки"). Приводится несколько примеров.
| - |
| |
Вводится понятие второй производной функции (как производной от ее первой производной). Аналогично, определяются и производные высших порядков (3-я, 4-я и т.д.). Обсуждается графический смысл 2-й производной (связь с выпуклостью графика)
| - |
| |
Приводится несколько примеров на применение правила дифференцирования сложной функции и вычисления производных высших порядков. В частности, рассматриваются задачи на дифференцирование тригонометрических функций и физические примеры вычисления скорости и ускорения.
| - |
| |
Вводится понятие неявной функции и основная идея вычисления производной неявной функции. В качестве примера неявной функции приводится петля Декарта x^3 + y^3 = 3axy.
| - |
| 30 минут |
| - |
|
Глава 7 << | | Дифференцирование различных функций | |
| |
Рассматривается задача вычисления производной показательной функции f(x)=ax. Отыскивается значение показателя a=e=2.7, при котором производная равна самой функции f(x)=f’(x)=ex. Обсуждается другой вид определения числа e (через соответствующий предел).
| - |
| |
На основе свойств производной экспоненциальной функции решается задача дифференцирования показательной функции f(x)=ax с произвольным показателем a.
| - |
| |
екция посвящена дифференцированию функций, образованных от экспоненциальной: логарифмических и гиперболических. Вводятся понятия натурального логарифма, sinh, cosh, th. Вычисляется производная обратной функции.
| - |
| |
Рассматриваются несколько примеров вычисления производных некоторых комбинаций экспоненциальной, логарифмической и гиперболических функций.
| - |
| 33 минуты |
| - |
|
Глава 8 << | | Аппроксимация функций | |
| |
На основе определения производной решается задача приближения (или, по-другому, аппроксимации) функции f(x) линейной функцией y=ax+b в точке. В качестве прямой линии, приближающей в точке х=а график f(x) берется касательная к графику f(x) в точке а. На нескольких примерах исследуется, насколько близко линейное приближение к функции f(x).
| - |
| |
Качественно рассматривается более общая задача - приближение функции f(x) в некоторой точке а степенным рядом. Приводится несколько примеров и оцениваются погрешности.
| - |
| |
Рассматривается задача аппроксимации функции f(x) квадратичной функцией y=ax^2+bх+с в точке а. Устанавливается связь между коэффициентами a, b, c и значениями первой и второй производной.
| - |
| |
Рассматривается разностное вычисление производной функции в точке при помощи линейной аппроксимации. Анализируются сопутствующие ошибки округления. Аналогично строится разностное выражение для 2-й производной.
| - |
| 30 минут |
| - |
|
Глава 9 << | | Исследование графиков функций | |
| |
Лекция посвящена исследованию графиков функций на монотонность и отыскание локальных максимума и минимума, выпуклости и точек перегиба графика.
| - |
| |
Устанавливается связь точек экстремума функции f(x) с поведением ее 1-й производной f'(х). Функция f(x) имеет экстремум (максимум или минимум) в точке a, если в этой точке f'(a)=0.
| - |
| |
Обсуждается теорема о наибольшем значении (EVT, теорема Вейерштрасса), говорящая об ограниченности непрерывной функции на сегменте (закрытом интервале) и о достижении функцией наибольшего (и наименьшего) значения на этом сегменте.
| - |
| |
Рассматривается связь поведения 2-й производной функции f''(х) с выпуклостью графика f(x). Показывается, что f''(х)=0 в точках перегиба функции. Устанавливается критерий отыскания точек максимума и минимума функции по значениям первой и второй производной f' (a) и f''(a).
| - |
| 30 минут |
| - |
|
Глава 10 << | | Теоремы о функциях, непрерывных на интервале | |
| |
Обсуждается теорема Ролля, говорящая о том, что производная функции f(x), непрерывной и дифференцируемой на закрытом интервале (сегменте [a,b]), хотя бы один раз обращается в ноль внутри сегмента при условии f(a)=f(b).
| - |
| |
Лекция посвящена теореме Вейерштрасса о среднем значении (mean value theorem). Она утверждает, что для функции f(x), непрерывной и дифференцируемой на сегменте [a,b], в некоторой точке сегмента выполнено соотношение: f(b)-f(a)=f'(c)(b-a).
| - |
| |
Лекция резюмирует основные шаги исследования графика функции: 1. Поиск особых точек и значения функции в особых точках; 2. Исследование знака 1-й производной f'(х) между особыми точках. 3. Отыскание нулей функции f(x); 4. Поведение функции f(x) на бесконечности; 5. Поведение функции f(x) вблизи точек, в которых она не определена.
| - |
| |
В качестве иллюстрации приводится полное исследование функции (на примере полинома): отыскание нулей и особых точек, для которых затем диагностируется достижение максимума и минимума (по значениям первой и второй производной).
| - |
| 30 минут |
| - |
| 45 минут |
| - |
|
Глава 11 << | | Неопределенный интеграл | |
| |
Обсуждается процедура "анти-дифференцирования" (обратная дифференцированию функции) и вводится понятие антипроизводной. На основании теоремы о среднем значении показывается, что для данной функции существует бесконечное число антипроизводных, отличающихся друг от друга на константу.
| - |
| |
Вводятся начальные понятия интегрального исчисления: первообразная (то же, что антипроизводная), неопределенный интеграл, подынтегральная функция, интегрирование по переменной. Приводятся примеры вычисления неопределенного интеграла.
| - |
| |
На основе известных правил дифференцирования выводятся соответствующие правила интегрирования. Указывается, что далеко не все элементарные функции удается проинтегрировать аналитически. В частности, отмечается, что не существует формулы для вычисления интеграла от произведения функций.
| - |
| |
Приводится несколько примеров вычисления неопределенных интегралов на основе выведенных правил интегрирования и общих соображений.
| - |
| 30 минут |
| - |
| |
Представлена техника вычисления неопределенных интегралов при помощи подстановки (через вспомогательную переменную). Подстановка основана на применении аналога формулы дифференцирования сложной функции.
| - |
|
Глава 12 << | | Дифференциальные уравнения | |
| |
Вводится понятие дифференциала функции. Иллюстрируется связь дифференциала и 1-й производной. Приводится пример практического применения дифференциала.
| - |
| |
Лекция посвящена введению в обыкновенные дифференциальные уравнения. Рассматривается постановка задачи Коши, общее и частное решение дифференциального уравнения. Приводится несколько примеров численного решения дифференциальных уравнений.
| - |
| |
Приводится геометрическая интерпретация решения дифференциальных уравнений. Объясняются методы конечных разностей и разделения переменных.
| - |
| |
В качестве примеров решения дифференциальных уравнений приводится решение уравнений одномерного движения объекта в поле тяжести.Раскрывается смысл начального условия.
| - |
| 30 минут |
| - |
|
Глава 13 << | | Определенный интеграл | |
| |
Обсуждаются пути решения второй основной задачи математического анализа: вычисление площади под графиком. Вводится понятие интегральных сумм (Римана): левой, правой, верхней, нижней, и определенного интеграла, как их предела.
| - |
| |
Дается определение определенного интеграла, как предела Римановой суммы. Приводится несколько примеров вычисления определенного интеграла (с одной стороны, геометрически, как площади фигуры; и с другой – путем вычисления пределов интегральных сумм).
| - |
| |
Приводится несколько важных замечаний, связанных с понятием определенного интеграла. Обсуждаются некоторые свойства определенного интеграла.
| - |
| |
На основе введенного определения для квадратичной функции производится построение интегральной суммы и последующий расчет определенного интеграла (как предела интегральной суммы).
| - |
| 30 минут |
| - |
| 30 минут |
| - |
|
Глава 14 << | | Основные формулы интегрального исчисления | |
| |
Обсуждается введенная ранее основная формула интегрального исчисления (формула Ньютона-Лейбница вычисления определенного интеграла), которая формулируется в виде "1-й фундаментальная теорема математического анализа".
| - |
| |
Дается определение интеграла с переменным верхним (нижним) пределом. Считается его производная по переменной верхнего предела. Обсуждается разница между переменной интегрирования и переменной верхнего предела.
| - |
| |
На основе использования интеграла с переменным верхним пределом выводятся обе фундаментальные теоремы математического анализа. Доказывается, что (первообразной) подынтегральной функции является интеграл с переменным верхним пределом.
| - |
| |
Формулируется 2-я фундаментальная теорема, утверждающая, что производная интеграла с переменным верхним пределом является равна подынтегральной функции. Предлагается простой алгоритм расчета определенного интеграла через вычисление неопределенного интеграла.
| - |
| 30 минут |
| - |
|
Глава 15 << | | Применение определенных интегралов | |
| |
На основании 2-й фундаментальной теоремы предлагается переопределение логарифмической функции, как интеграла с переменным верхним пределом от функции 1/х. Исследуется график введенной функции. Через логарифм определяется число е и экспоненциальная функция.
| - |
| |
Согласно определению определенного интеграла рассчитывается площадь плоской фигуры, ограниченная двумя кривыми. Для вычисления точек пересечения кривых применяется численное решение нелинейного уравнения.
| - |
| |
Рассматривается метод расчета объема тел посредством разбиения на параллельные сечения и последующего интегрирования. Приводится пример применения определенного интеграла для вычисления объема конуса и шара.
| - |
| |
Приводится пример применения вычисления определенного интеграла для вычисления объема тела вращения (конуса). Метод обобщается на вращение произвольной функции f(x) вокруг оси x. Обсуждается возможность вычисления площади тела вращения.
| - |
| 30 минут |
| - |
|
Глава 16 << | | Методы вычисления определенных интегралов | |
| |
В качестве первого приема вычисления определенного интеграла рассматривается метод расчет неопределенного интеграла при помощи подстановки (через вспомогательную переменную).
| - |
| |
Рассматривается метод вычисления определенного интеграла "по частям", обоснованием которого служит правило дифференцирования произведения двух функций. Приводятся примеры расчета интеграла "по частям".
| - |
| |
Обсуждается основная идея приближенного (численного) расчета определенного интеграла, согласно его определению. Для расчета площади соответствующей плоской фигуры применяются методы прямоугольников, трапеций и Симсона. Приводится оценка погрешности численного интегрирования.
| - |
| |
Вводится понятие несобственного интеграл. В частности, интегрирование в бесконечных пределах определяется, как двойной предел, к которому сходятся интегральные суммы при стремлении предела к бесконечности. Приводятся примеры сходящихся и расходящихся несобственных интегралов.
| - |
| 30 минут |
| - |
| 30 минут |
| - |
|
Курс опубликован не полностью. Продолжение следует... |