Деревья, вероятность и генетика
Вероятность и генетика
Приведем примеры использования деревьев в генетике. С помощью дерева можно
наглядно представить наследование пары генов
и
,
передаваемых родителями. Потомок получает эти гены в одной из комбинаций:
или
.
Генетически комбинация
не
отличается от комбинации
.
В генетике допускается, что наследование данного гена происходит случайно,
независимо и с равными вероятностями для всех потомков (у растений,
например, их может быть очень много). Пусть ген
наследуется (и
от отца, и от матери) с вероятностью
, ген
— с вероятностью
.
В этом случае отца в смысле унаследования гена можно уподобить, например,
одной бросаемой монете, мать — второй (рис. 13.3).
Тогда
.
Далее будем полагать, что . Заметим, что у
таких
"генеалогических" деревьев вершины, если они не висячие и не
корневые,
имеют степень 3.
Теперь от родителей перейдем к "дедушкам" и "бабушкам" и продлим дерево еще на один ярус.
Когда сочетаются браком двоюродные брат и сестра, они могут передать своему ребенку копии пар генов, которыми обладали их общие дедушка и бабушка (возможными мутациями этих генов пренебрегаем).
Считая, что в общем случае неизвестно численное значение
вероятности того, что потомок наследует от своих
родителей пару
одинаковых генов
или
определим в
зависимости от
вероятность унаследования общей пары генов
от
общего дедушки.
Граф, описывающий ситуацию, которая нас интересует, в случаях так называемого кровного родства деревом не является — две его висячие вершины "слипаются" (рис. 13.4).
Введем коэффициент кровного родства по формуле ,
где
— вероятность того, что оба гена
являются копиями генов
. При этом оказывается, что
вероятность
нетрудно
подсчитать.
Рассмотрим один из генов, который унаследовал от своего
отца
.
Вероятность того, что
унаследовал этот ген от своего деда
,
равна
. Вероятность того, что дедушка передал копию
того же
гена
, также равна
, и вероятность
того, что
передал
копию этого гена
, равна
. Все эти
события независимые, и, следовательно,
.
.
Рассмотренный пример дает некоторое представление о расчетах, связанных с проблемами сохранения в потомстве желательных признаков прародителей: вывода сортов пшеницы, пород собак, голубей, домашних животных, искусственного восстановления вымирающих пород животных. Все эти проблемы разные по роли и значимости, но они имеют общую математическую суть.