Эволюционные вычисления

: Литература по курсу
Московский государственный университет путей сообщения
Опубликован: 10.10.2014 | Доступ: свободный | Студентов: 869 / 193 | Длительность: 22:10:00
  • 1.
    Fogel L.J., Owens A.J., Walsh M.J.
    Artificial Intelligence throw Simulated Evolution.
  • 2.
    Holland J.P.
    Adaptation in Natural and Artificial Systems.An Introductionary Analysis With Application to Biology? Control and Artificial Intelligence.
  • 3.
    Goldberg D.E.
    Genetic Algorithms in Search, Optimization and Machine Learning.
  • 4.
    Rechenberg I.
    Evolutionstrategie: Optimierung technisher Systems nach Prinzipien der biologischen Evolution.
  • 5.
    Koza J.R.
    Genetic Programming.
  • 6.
    Ивахненко А.Г.
    Самообучающиеся системы распознавания и автоматического управления.
  • 7.
    Цыпкин Я.З.
    Основы теории обучающихся систем.
  • 8.
    Расстригин Л.А.
    Статистические методы поиска.
  • 9.
    Букатова И.Л.
    Эволюционное моделирование и его приложения.
  • 10.
    Букатова И.Л., Михеев Ю.И., Шаров А.М.
    Эвоинформатика: теория и практика эволюционного моделирования.
  • 11.
    В.М.Курейчик.
    Генетические алгоритмы.
  • 12.
    Гладков Л.А., Курейчик В.В., Курейчик В.М
    Генетические алгоритмы.
  • 13.
    Курейчик В.В., Курейчик В.М., Родзин С.И.
    Теория эволюционных вычислений.
  • 14.
    Скобцов Ю.А.
    Основы эволюционных вычислений.
  • 15.
    Michalevich Z.
    Genetic Algorithms + data structures=Evolution Programs.
  • 16.
    Пилинский М., Рутковская Д., Рутковский Л.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 17.
    Deepa S.N., Sivanandam S.N.
    Introduction to genetic algorithms.
  • 18.
    Macready W.G., Wolpert D.H.
    No free lunch theorems for search / Operations research
  • 19.
    Macready W.G., Wolpert D. H.
    No Free Lunch Theorems for Search Technical
  • 20.
    Holland J.H.
    Adaptation in Natural and Artificial Systems. An Introductory Analysis with Application to Biology - Control and Artificial Intelligence.
  • 21.
    Goldberg D.E.
    Genetic Algorithms in Search, Optimization and Machine Learning.
  • 22.
    Гладков Л.А., Курейчик В.В, Курейчик В.М.
    Генетические алгоритмы.
  • 23.
    Скобцов Ю.А.
    Основы эволюционных вычислений.
  • 24.
    Michalevich Z .
    Genetic Algorithms + data structures=Evolution Programs.
  • 27.
    Барашко А.С., Скобцов Ю.А., Сперанский Д.В.
    Моделирование и тестирование дискретных устройств.
  • 28.
    Миронов С.В., Сперанский Д.В.
    Генетические алгоритмы для сокращения диагностической информации //Автоматика и телемеханика.
  • 29.
    Brayan D., Brgles F., Kazminski K.
    Combinational profiles of sequential benchmark circuits // Proceed. of 1989 Intern. Symposium on Sequential Circuits
  • 30.
    Скобцов В.Ю., Скобцов Ю.А., Сперанский Д.В.
    Моделирование, тестирование и диагностика цифровых устройств.
  • 31.
    Скобцов В.Ю., Скобцов Ю.А.
    Современные модификации и обобщения генетических алгоритмов // Таврический вестник компьютерных наук и математики
  • 32.
    Скобцов Ю.А.
    Основы эволюционных вычислений.
  • 33.
    Mitchel М.
    An introduction to genetic algorithms.
  • 34.
    Пилинский М., Рутковская Д., Рутковский Л.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 35.
    Michalevich Z.
    Genetic Algorithms + data structures=Evolution Programs.
  • 36.
    Mandavilli S., Patnaik L. M.
    Adaptation in genetic algorithms. In: Genetic algorithms for pattern recognition.
  • 37.
    Mahfoud S.W.
    A comparison of parallel and sequential niching methods.//Proceedings of VI International conference on genetic algorithms.
  • 38.
    Gordon V., Mathias K., Whitley D.
    Lamarkian evolution, the Baldwin effect & function optimization, in Davidor Y., Schwefel H., Manner R., editors, Parallel problem solving from nature: PPSN III
  • 39.
    Grefenstette J.J.
    Lamarkian learning in multi-agent environment//Proceedings of the 4th international conference on genetic algorithms
  • 40.
    Davidor Y.
    A genetic algorithm applied to robot trajectory generation. Davis L.editor, Handbook of genetic algorithms
  • 41.
    Moscato P., Norman M.
    A memetic approach for the traveling salesman problem: implementation of computational ecology for combinatorial optimization on message-passing systems//Proceedings of international conference on parallel computing & transporter application
  • 42.
    Radcliffe N., Surry P.
    Formal memetic algorithm//Proceeding - Selected Papers from AISB Workshop on Evolutionary Computing.
  • 43.
    Dawkins R.
    The selfish gene.
  • 44.
    Carlos Cotta, Pablo Moscato
    Hand book of memetic algorithms.
  • 45.
    Herera F., Lozano M.
    Adaptation of genetic algorithm parametres based on fuzzy logic controllers// In F.Herera & J.Verdegay, editors. Genetic algorithms and soft computing, Physica-Verlag.
  • 46.
    Lin L., Mitsuo G., Runwei C.
    Network models and optimization.
  • 47.
    Eiben A., Hinterding R., Michalevicz Z.
    Adaptation in evolutionary computation: a survey//Proceedings of IEEE international conference on evolutionary computation
  • 48.
    Davis L.
    editor. Handbook of genetic algorithms.
  • 49.
    Juldstrom B.
    What have you done for me lately adapting operator probabilities in a steady-state genetic algorithm//Proceedings 6th international conference on Gas, San Francisco
  • 50.
    Katsaras C.P., Koumousis V.K.
    Asow-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance//IEEE Transactions on Evolutionary Computation, 2006, 10(1)
  • 51.
    L. Lin and M. Gen
    "Auto-tuning strategy for evolutionary algorithms:Balancing between exploration and exploitation," Soft Computing,vol. 13
  • 52.
    Kelly R.B., Moel M.C., Stewart C.V.
    Reducing the search time of a steady state genetic algorithm using the immigration operator//Proceedings IEEE International Conference Toolsfor AI.- 1991
  • 53.
    Скобцов Ю.А.
    Основы эволюционных вычислений.
  • 54.
    А.И.Эль-Хатиб., Скобцов Ю.А.
    Параллельные генетические алгоритмы// Науков? прац? Донецького национального техн?чного ун?верситету, сер?я "Обчислювальна техн?ка та автоматизац?я",
  • 55.
    Alba E., Troya J.M.
    A survey of parallel distributed genetic algorithms//Complexity.
  • 56.
    E.Alba, M.Tomassini.
    Parallelism and evolutionary algorithms//IEEE Trans. On evolutionary computation.
  • 57.
    Engelbrecht A.P.
    Computional intelligence: introduction. John Wiley&Sons Ltd.
  • 58.
    Holland J.H.
    ECHO: Explorations of Evolution in a Miniature World. In J.D. Farmer and J. Doyne, editors, Proceedings of the Second Conference on Artificial Life
  • 59.
    Fukuda T. and Kubota R.K.
    Learning, adaptation and evolution of intelligent robotic system. In proceedi.H.Holland. ECHO: Explorations of evolution in miniature world. In J.D.Farmer an ngs of the IEEE international symposium on intelligent control, 1988
  • 60.
    Rosin C.D. and Belew R.K.
    New methods for competitive coevolution. Evolutionary computation, 1997.- 5(1).
  • 61.
    De Jong K.A. and Potter M.A.
    Evolving complex structures via cooperative coevolution. In proceedings of the fourth annual conference on evolutionary programming, 1995.
  • 62.
    Potter M.A. and de Jong K.A.
    A cooperative coevolutionary approach to function optimization. In T.Davidor, H-P. Schwefel and R.Manner, editors, Proceedings of the paralltl problem solving from nature, 1994
  • 63.
    Potter M.A. and de Jong K.A.
    Evolving neural networks with collaborative species. In proceedings of the summer computer simulation conference, 1995
  • 64.
    Potter M.A. de Jong K.A. and Grefenstette J.J.
    A coevolutionary approach to learning sequential desicision rules. In L.Eshelman, editor, Proceedings of the sixth international conference on genetic algorithms, 1995
  • 65.
    Pareto V.
    Manual di Economica Polittica, Societa Editrice Libraia, Milan, Italy,1906; translated into English by A.S.Schwier, as Manual of Political Economy.
  • 66.
    Lin Lin., Mitsuo Gen, Runwei Cheng
    Network models and optimization.
  • 67.
    Michalevich Z.
    Genetic Algorithms + data structures=Evolution Programs.
  • 68.
    Пилинский М., Рутковская Д., Рутковский Л.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 69.
    J. D., Schaffer
    Multiple objective optimization with vector evaluated genetic algorithms, Proceeding 1st International Conference on Gas
  • 70.
    Fleming, Fonseca C., P.
    Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization, Proceeding 5th International Conference on Gas
  • 71.
    Ishibuchi H., Murata T.
    A multiobjective genetic local search algorithm and its applications to flowshop scheduling// IEEE Transactions on Systems, Man and Cybernetics,1998.- 28(3),
  • 72.
    Cgeng R., Gen M.
    Genetic algorithms and engineering optimization
  • 73.
    Agarwal S., Deb, K., Meyarivan T., Pratep A.
    A fast and elitist multiobjective genetic algorithm: NSGA-II// IEEE Transactions on Evolutionary Computation, 2002.- 6(2)
  • 74.
    Gen M., Lin L.
    Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing, Vol. 13
  • 75.
    Friedberg R.M.
    A learning machine: part1// IBM J. research and development.-1958
  • 76.
    Koza J.R.
    Genetic Programming.
  • 77.
    Ю.А. Скобцов.
    Основы эволюционных вычислений
  • 78.
    Кнут Д.
    Искусство программировния.Т.1
  • 79.
    F.D.Francone., P.Nordin, R.E.Keller, W.Banzhaf
    Genetic programming: introduction.
  • 80.
    Banzhaf W., Brameier M.
    A comparison of linear genetic programming and neural networks in medical data mining// IEEE Transactions on Evolutionary Computation.
  • 81.
    Banzhaf W., Kantschik W.
    Linear-graph GP - a new GP structure// Proceedings of the 4th European Conference on Genetic Programming.
  • 82.
    Скобцов В.Ю., Скобцов Ю.А.
    Модификации генетического программирования//Труды конференций "Интеллектуальные системы" и "Интеллектуальные САПР"
  • 83.
    de Garis H., Iba H.
    Extened genetic programming with recombinative guidance.
  • 84.
    Gruau F.
    Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Laboratoire del'Informatique du Parallelisme, Ecole Normale Superieure de Lyon, France.
  • 85.
    Pruainkevicz P.
    Lindermayer A. The Algorithmic Beaty of Plants
  • 86.
    Whigham P.A.
    Grammaticaly-based genetic programming // In Roska J.P.,editor, Proceedings of the workshop on Genetic Programming:From Theory to Real-World Application
  • 87.
    Holland J.P.
    Adaptation in Natural and Artificial Systems. An Introductory Analysis with Application to Biology. Control and Artificial Intelligence.
  • 88.
    De Jong K.A., Gordon D.F., Spears W.H.
    Using genetic algorithms for concepts learning// Machine Learning.
  • 89.
    Goldberg D.E.
    Genetic Algorithms in Search, Optimization and Machine Learning.
  • 90.
    Mitchel T.
    Machine Learning
  • 91.
    Michalevich Z.
    Genetic Algorithms + data structures=Evolution Programs.
  • 92.
    Wilson S.W.
    Classifier fitness based on accuracy//Evolutionary Computation, №3(2)
  • 93.
    Wilson S.W.
    Generalization in the XCS classifier system// Genetic Programming 1998: Proceedings of the Third Annual Conference
  • 94.
    Martin V.Buts.Rule
    Based Evolutionary Online Learning
  • 95.
    Скобцов Ю.А., Хмелевой С.В.
    Генетический подход к задачам прогнозирования// Науков? прац? Донецького нац?онального техн?чного ун?верситету: сер?я"Обчислювальна техн?ка та автоматизац?я".- Випуск 90
  • 96.
    Alistair Sinclair., Ari Juels, Shumeet Baluja
    The Equilibrium Genetic Algorithm and the Role of Crossover.
  • 97.
    Shumeet Baluja.
    Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning (Tech. Rep. No. CMU-CS-94-163).
  • 98.
    Goldberg D. E., Harik G., Lobo F. G.
    The Compact Genetic Algorithm// IEEE Trans. Evolutionary Computation. - 1999. - vol. 3.
  • 99.
    Corno F., Sonza Reorda M., Squillero G.
    The Selfish Gene Algorithm: a new Evolutionary Optimization Strategy. Proceedings of the ACM Symposium on Applied Computation.
  • 100.
    Дубов Я.В., Скобцов Ю.А.
    Вероятностные и компактные генетические алгоритмы// Искусственный интеллект
  • 101.
    Скобцов Ю.А.
    Основы эволюционных вычислений.
  • 102.
    Скобцов Ю.А., Федоров Е.Е.
    Метаэвристики.
  • 103.
    Rechenberg I.
    Evolutionstrategie: Optimierung technisher Systems nach Prinzipien der biologischen Evolution.
  • 104.
    Michalevich Z.
    Genetic Algorithms + data structures=Evolution Programs.
  • 105.
    Rechenberg I.
    Evolution strategy. In J.Zurada,R.MarksI, C.Robinson. Computational Intelligence - Imitating Life, Piscatway,NJ: IEEE Press.-1994.
  • 106.
    Schwefel H.P.
    Numerical Optimization of Computer Models.
  • 107.
    H-Byung Jun, K-B. Sim., S-W. Lee
    Performance Improvement of Evolution Strategies using Reinforcement Learning. In Proceedings of the IEEE International Fuzzy Systems Conference, volume 2
  • 108.
    Koumoutsakos P.D., Muller S.D., Schraudolph N.N.
    Step Size Adaption in Evolution Strategies using Reinforcement Learning. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1
  • 109.
    Hansen N., Ostermeier A.
    An Evolution Strategy with Coordinate System Invariant Adaption of Arbitrary Normal Mutation Distributions within The Concept of Mutative Strategy Parameter Control. In Proceedings of the Genetic and Evolutionary Computation Conference
  • 110.
    Kursawe F.
    Towards Self-Adapting Evolution Strategies// Proceedings of the Second IEEE Conference on Evolutionary Computation
  • 111.
    Hashem M.A., Izumi K., Watanabe K.
    An Evolution Strategy with Competing Subpopulations// Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997
  • 112.
    Fathi M., Hildebrand L., Reusch B.
    Directed Mutation - A New Self-Adaption for Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary Computationю.-1999
  • 113.
    Engelbrecht A.P.
    Computional intelligence: introduction
  • 114.
    Пилинский М., Рутковская Д., Рутковский Л.
    Нейронные сети, генетические алгоритмы и нечеткие системы.
  • 115.
    Fogel L.J., Owens A.J., Walsh M.J.
    Artificial Intelligence throw Simulated Evolution.
  • 116.
    Chellaila K., Fogel D.B.
  • 117.
    Fogel D.B.
    Evolutional computation: toward a new philosophy of machine entelligence. New York:IEEE Press.
  • 118.
    Beantley P.J.
    Evolutionary Design be Computers.
  • 119.
    Engelbrecht A.P.
    Computional intelligence: introduction.
  • 120.
    Fogel D.B.
    System Identification throught Simulated Evolution: A Machine Learning Approach to Modeling.
  • 121.
    Chellapilla K.
    Combining Mutation Operators in Evolutionary Programming/ IEEE Transactions on Evolutionary Computation.-1998.-2(3)
  • 122.
    Engelbrat A.P., Messerschmidt L.
    Learning to play games using a PSO-based competitive learning approach//IEEE Transactions on Evolutionary Computations.-8(3).
  • 123.
    Fogel D.B.
    Evolving Artificial Intelligence.
  • 124.
    Lee C-Y, Yao X.
    Evolutionary programming using mutations based on the Levy probability distribution//IEEE Transactions on Evolutionary Computations.-8(2)
  • 125.
    Chellapilla K.
    Combining mutation operatots in evolutionary programming// IEEE Transactions on Evolutionary Computations.-2(3)
  • 126.
    Wong K.P., Yurievich J.
    Evolutionary-Programming-Based Algorithms from Environmentally-Constrained Economic Dispatch// IEEE Transactions on Power Systems.-13(2).
  • 127.
    Atmar J.W., D.B., Fogel, Fogel L.J.
    Meta-Evolutionary Programming.In Proceedings of the Twenty-Fifth Conference on Signals,Systems and Computers.- 1991.-volume 1
  • 128.
    T.Back and H.-P.Schwefel.
    An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation,1(1)
  • 129.
    Angeline P.J., Pollack J.P., Saunders G.M.
    An Evolutionary That Constructs Recurrent Neural Networkd.//IEEE Transactions on Neural Networks, 5(1).
  • 130.
    Lai L.L., Ma J.T.
    Determination of Operational Parameters of Electrical Machines using Evolutionary Programming// Proceedings of the Seventh International Conference on Electrical Machines and Drives.-1995
  • 131.
    Wong K.P., Yurievich J.
    Evolutionary programming based optimal power flow algorithm//IEEE Transactions on Power Systems.-14(4)
  • 132.
    Morris A.S., Swain A.K.
    A Novel Hybrid Evolutionary Programming Method for Function Optimization// Proceedings of the IEEE Congress on Evolutionary Computation.-2000.- volume 1
  • 133.
    Gao W.
    Fast Immunized Evolutionary Programming. In Proceedings of the IEEE Congress on Evolutionary Computation.-2004.-volume 1
  • 134.
    Atmar J.W., Fogel, Fogel D.B., L.J.
    Meta-Evolutionary Programming// Proceedings of the Twenty-Fifth Conference on Signals, Systems and Computers.- 1991.- volume 1
  • 135.
    Angeline P.J., Fogel D.B., Fogel L.J.
    An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines. In J. McDonnell, R. Reynolds, and D.B. Fogel,editors// Proceedings of the Fourth Annual Conference on Evolutionary Programming.
  • 136.
    Matsumara Y., Ohkura K., Ueda K.
    Evolutionary Programming with Noncoding Segments for Realvalued Function Optimization// Proceedings of the IEEE International Conference on Systems, Man and Cybernetics.-1999.-volume 4
  • 137.
    Fogel D.B., Fogel G.B.
    Multiple-vector self adaptation in evolutionary algorithms//BioSystems-2001.-61(2-3)
  • 138.
    Eberhart.C., KennedyJ.
    Particleswarmintelligence//ProceedingsoftheIEEEInternationalJoint Conference on Neural Networks.-1995
  • 139.
    Engelbrecht A.P.
    Computional intelligence: introduction.
  • 140.
    Deepa S.N., Sivanandam S.N.
    Introduction to genetic algorithms.
  • 141.
    Скобцов Ю.А., Федоров Е.Е.
    Метаэвристики.
  • 142.
    Dorigo M.
    Optimization, learning and natural algoriothms.PhD. thesis.
  • 143.
    Deepa S.N., Sivanandam S.N.
    Introduction to genetic algorithms.
  • 144.
    Engelbrecht A.P.
    Computional intelligence: introduction.
  • 145.
    CaroG.Di., Dorigo M.
    The ant colony optimization meta-heuristic.InD.Corne, M.Dorigo, F.Glover, editors.// New ideas in optimization.
  • 146.
    Colorni A., Maniezzo V.
    The ant system applied to the quadratic assignment problem//IEEE transactions on knowledge and data engineering, № 11(5)
  • 147.
    ColorniA., DorigoM., Maniezzo V.
    Ant system: optimization by a colony of cooperative agents//IEEE transactions on systems, man and cybernetics-part B,№ 26(1).
  • 148.
    Dorigo M., Gambardella M.
    Ant colony systems: a cooperative leaning approach to the traveling salesman problem//IEEE transactions on evolutionary computation.-№ 1(1).
  • 149.
    Hoos H., T.StutzleT.
    MAX-MIN ant system and local search for the traveling salesman problem// Proceedings of the IEEE international conference on evolutionary computation.-1997
  • 150.
    Dorigo M., Gambardella L.M.
    Ant-Q: a reinforcement learning approach to TSP// Proceedings of twelfth international conference on machine learning.-1995.
  • 151.
    Taillard E.D.
    FANT: fast ant system. Technical report IDSIA 46-98
  • 152.
    Bullnheimer B., Kotsis G., StrauseC.
    Parallelization strategies for the ant systems//In G.Toraldo, A.Murli,P.Pardalos, editor.Kluwer. Series on applied optimization
  • 153.
    Carbonaro A., Maniezzo V.
    An ANTS heuristic for the frequency assignment problem//Future generation computer systems, №16(9)
  • 154.
    Guntsch M., Middlendorf M.
    Applying population base ACO to dynamic optimization problems// Proceedings of third international workshop on ant colony optimization and swarm intelligence.-2003
  • 155.
    Gong S., Li Y.
    Dynamic ant colony optimization for TSP//International Journal of advanced manufacturing technology.№ 22(7-8)
  • 156.
    Guntsch M., Middendorf M.
    Pheromone modification strategies for ant algorithms applied to dynamic TSP// Proceedings of the workshop on applications of evolutionary computing.-2001
  • 157.
    Fonlupt C., Roux O., Talbi E-G.
    ANTabu. Technical report LIL-98-04