Оценка коммуникационной трудоемкости параллельных алгоритмов
3.2. Анализ трудоемкости основных операций передачи данных
При всем разнообразии выполняемых операций передачи данных при параллельных способах решения сложных научно-технических задач, определенные процедуры взаимодействия процессоров сети могут быть отнесены к числу основных коммуникационных действий, либо наиболее широко распространенных в практике параллельных вычислений, либо тех, к которым могут быть сведены многие другие процессы приема-передачи сообщений. Важно отметить также, что в рамках подобного базового набора для большинства операций коммуникации существуют процедуры, обратные по действию исходным операциям (так, например, операции передачи данных от одного процессора всем имеющимся процессорам сети соответствует операция приема в одном процессоре сообщений от всех остальных процессоров). Как результат, рассмотрение коммуникационных процедур целесообразно выполнять попарно, поскольку во многих случаях алгоритмы выполнения прямой и обратной операций могут быть получены исходя из одинаковых предпосылок.
Рассмотрение основных операций передачи данных в этой лекции будет осуществляться на примере таких топологий сети, как кольцо, двумерная решетка и гиперкуб. Для двумерной решетки будет предполагаться также, что между граничными процессорами в строках и столбцах решетки имеются каналы передачи данных (т.е. топология сети представляет собой тор). Как и ранее, величина m будет означать размер сообщения в словах, значение p определяет количество процессоров в сети, а переменная N задает размерность топологии гиперкуба.
3.2.1. Передача данных между двумя процессорами сети
Трудоемкость данной коммуникационной операции может быть получена путем подстановки длины максимального пути (диаметра сети) в выражения для времени передачи данных при разных методах коммуникации (см. п. 3.1.2) – см. табл. 3.1.
Топология | Передача сообщений | Передача пакетов |
---|---|---|
Кольцо | ||
Решетка-тор | ||
Гиперкуб |
3.2.2. Передача данных от одного процессора всем остальным процессорам сети
Операция передачи данных (одного и того же сообщения) от одного процессора всем остальным процессорам сети ( one-to-all broadcast или single-node broadcast ) является одним из наиболее часто выполняемых коммуникационных действий. Двойственная ей операция – прием на одном процессоре сообщений от всех остальных процессоров сети ( single-node accumulation ). Подобные операции используются, в частности, при реализации матрично-векторного умножения, решении систем линейных уравнений методом Гаусса, решении задачи поиска кратчайших путей и др.
Простейший способ реализации операции рассылки состоит в ее выполнении как последовательности попарных взаимодействий процессоров сети. Однако при таком подходе большая часть пересылок является избыточной и возможно применение более эффективных алгоритмов коммуникации. Изложение материала будет проводиться сначала для метода передачи сообщений, затем – для пакетного способа передачи данных (см. п. 3.1.2).
Передача сообщений. Для кольцевой топологии процессор – источник рассылки может инициировать передачу данных сразу двум своим соседям, которые, в свою очередь, приняв сообщение, организуют пересылку далее по кольцу. Трудоемкость выполнения операции рассылки в этом случае будет определяться соотношением:
( 3.4) |
Для топологии типа решетка-тор алгоритм рассылки может быть получен из способа передачи данных, примененного для кольцевой структуры сети. Так, рассылка может быть выполнена в виде двухэтапной процедуры. На первом этапе организуется передача сообщения всем процессорам сети, располагающимся на той же горизонтали решетки, что и процессор – инициатор передачи. На втором этапе процессоры, получившие копию данных на первом этапе, рассылают сообщения по своим соответствующим вертикалям. Оценка длительности операции рассылки в соответствии с описанным алгоритмом определяется соотношением:
( 3.5) |
Для гиперкуба рассылка может быть выполнена в ходе N-этапной процедуры передачи данных. На первом этапе процессор-источник сообщения передает данные одному из своих соседей (например, по первой размерности) – в результате после первого этапа есть два процессора, имеющих копию пересылаемых данных (данный результат можно интерпретировать также как разбиение исходного гиперкуба на два таких одинаковых по размеру гиперкуба размерности N-1, что каждый из них имеет копию исходного сообщения). На втором этапе два процессора, задействованные на первом этапе, пересылают сообщение своим соседям по второй размерности и т.д. В результате такой рассылки время операции оценивается при помощи выражения:
( 3.6) |
Сравнивая полученные выражения для длительности выполнения операции рассылки, можно отметить, что наилучшие показатели имеет топология типа гиперкуб; более того, можно показать, что данный результат является наилучшим для выбранного способа коммуникации с помощью передачи сообщений.
Передача пакетов. Для топологии типа кольцо алгоритм рассылки может быть получен путем логического представления кольцевой структуры сети в виде гиперкуба. В результате на этапе рассылки процессор – источник сообщения передает данные процессору, находящемуся на расстоянии p/2 от исходного процессора. Далее, на втором этапе оба процессора, уже имеющие рассылаемые данные после первого этапа, передают сообщения процессорам, находящимся на расстоянии p/4, и т.д. Трудоемкость выполнения операции рассылки при таком методе передачи данных определяется соотношением:
( 3.7) |
Для топологии типа решетка-тор алгоритм рассылки может быть получен из способа передачи данных, примененного для кольцевой структуры сети, в соответствии с тем же способом обобщения, что и в случае использования метода передачи сообщений. Получаемый в результате такого обобщения алгоритм рассылки характеризуется следующим соотношением для оценки времени выполнения:
( 3.8) |
Для гиперкуба алгоритм рассылки (и, соответственно, временные оценки длительности выполнения) при передаче пакетов не отличается от варианта для метода передачи сообщений.