Опубликован: 02.09.2013 | Доступ: свободный | Студентов: 429 / 54 | Длительность: 19:27:00
  • 1.
    Otsu N
    A threshold selection method from gray-level histogram
  • 2.
    Дж. Стокман, Л. Шапиро
    Компьютерное зрение
  • 3.
    K, S. and Abe, Suzuki
    Topological Structural Analysis of Digitized Binary Images by Border Following
  • 4.
    A.Canny
    Computational Approach to Edge Detection
  • 5.
    Shi and C. Tomasi
    Good Features to Track. Proceedings of the Vision and Pattern Recognition
  • 6.
    Bishop C. M
    Pattern Recognition and Machine Learning.
  • 7.
    Breiman L
    Random Forests // Machine Learning
  • 8.
    Breiman L., Friedman J.H., Olshen R.A., Stone C.J
    Classification and Regression Trees
  • 9.
    Support-Vector Networks // Machine Learning
  • 10.
    Cortes C., Vapnik V. N
    A Decision-Theoretic Generalization of Online Learning and an Application to Boosting
  • 11.
    Friedman J. H
    Greedy Function Approximation: a Gradient Boosting Machine
  • 12.
    Freund Y., Schapire R
    Friedman J. H. Stochastic Gradient Boosting. Technical report. Dept. of Statistics, Stanford
  • 13.
    Friedman J, Hastie T., Tibshirani R.
    The Elements of Statistical Learning: Data Mining, Inference
  • 14.
    Mitchell T
    Machine Learning
  • 15.
    Samuel A
    Some Studies in Machine Learning Using the Game of Checkers
  • 16.
    Agrawal R., Srikant R
    Fast algorithms for mining association rules in large databases
  • 17.
    Alkhalid A, Chikalov I, Hussain S, Moshkov M
    Extensions of dynamic programming as a new tool for decision tree optimization
  • 18.
    Alkhalid A, Chikalov I, Moshkov M
    On algorithm for building of optimal ?-decision trees
  • 19.
    Alonso D., Nieto M, Saldaro L.
    Robust Vehicle Detection through Multidimensional Classification for On Broad Video Based Systems
  • 20.
    Amit Y
    2D Object Detection and Recognition: models, algorithms and networks
  • 21.
    Andrews S., Hofmann T, Tsochantaridis I.
    Support vector machines for multiple-instance learning. Advances in Neural Information Processing Systems
  • 22.
    Alpaslan F., Apolloni B., Ghosh A., Jain L.C., Patnaik S
    Machine Learning and Robot Perception
  • 23.
    Arrospide J., Jaureguizar F, Nieto M., Salgado L.
    Robust vehicle detection through multidimensional classification for on board video based systems
  • 24.
    Arndt R., Lhlein O, Paulus D., Schweiger R. Ritter W.
    Detection and tracking of multiple pedestrians in automotive applications
  • 25.
    Arth C., Bischof H. Real-Time License Plate, Limberger F.
    Recognition on an Embedded DSP-Platform
  • 26.
    Aldrich C, Aureta L.
    Empirical comparison of tree ensemble variable importance measures
  • 27.
    Ballard D.H., Brown C.M.
    Computer Vision
  • 28.
    Bauer E., Kohavi R.
    An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
  • 29.
    Bay H., Ess A., Gool L.V, Tuytelaars T.
    SURF: speed up robust features
  • 30.
    Bertozzi M., Broggi A., Chapuis R., Chausse F, Fascioli A., Tibaldi A.
    Pedestrin localization and tracking system with Kalman filtering Intelligent Vehicles Symposium
  • 31.
    Binelli E., Broggi A., Fascioli A., Ghidoni S., Graf T., Grisleri P., Meinecke M
    A modular tracking system for far infrared pedestrian recognition
  • 32.
    Boryczka U, Kozak J
    New algorithms for generation decision trees - Ant-Miner and its modifications
  • 33.
    Bosch A., Munoz X, Zisserman A.
    Image classification using random forests and ferns
  • 34.
    Bradski G., Kaehler A.
    Learning OpenCV Computer Vision with OpenCV Library
  • 35.
    Breiman L.
    Random Forests
  • 36.
    Breiman L., Friedman J.H., Olshen R.A., Stone C.J.
    Classification and Regression Trees.
  • 37.
    Calonder M., Fua P, Lepetit V., Strecha C.
    BRIEF: Binary Robust Independent Elementary Features
  • 38.
    Chikalov I
    Algorithm for constructing of decision trees with minimal number of nodes
  • 39.
    Chikalov I, Moshkov M, Zielosko B
    Online learning algorithm for ensemble of decision rules
  • 40.
    Comaniciu D., Meer P, Ramesh V.
    Real-time tracking of non-rigid objects using mean shift
  • 41.
    Dalal N., Triggs B
    Histograms of oriented gradients for human detection
  • 42.
    Bray C., Csurka G, Dance C., Fan L., Willamowski J.
    Visual categorization with bags of keypoints
  • 43.
    Berg A., Deng J., Fei-Fei L.
    Hierarchical Semantic Indexing for Large Scale Image Retrieval
  • 44.
    Berg A., Deng J., Fei-Fei L., Li K.
    What does classifying more than 10,000 image categories tell us
  • 45.
    Deng J., Dong W., Fei-Fei L, Li K., Li L., Socher R.
    ImageNet: A large-scale hierarchical image database
  • 46.
    Belongie S., Dollar P., Perona P
    The fastest pedestrian detector in the west
  • 47.
    Dollar P., Perona P, Schiele B., Wojek C.
    Pedestrian Detection: An Evaluation of the State of the Art
  • 48.
    Druzhkov P. N., Eruhimov V. L., Kozinov E. A., Kustikova V. D., Meyerov I. B., Polovinkin A. N., Zolotykh N. Yu
    On some new object detection features in OpenCV Library
  • 49.
    Duda R.O., Hart P.E., Stork D.G
    Pattern classification (2nd edition).
  • 50.
    Enzweiler M., Gavrila D. M
    Monocular Pedestrian Detection: Survey and Experiments
  • 51.
    Ewens W.J., Grant G
    Grant Statistical Methods in Bioinformatics: An Introduction.
  • 52.
    Bruns E., Exner D., Grundhofer A, Kurz D.
    Fast and robust CAMShift tracking
  • 53.
    Fellbaum C
    WordNet: An Electronic Lexical Database.
  • 54.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D
    Object Detection with Discriminatively Trained Part Based Models
  • 55.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D
    Cascade object detection with deformable path model
  • 56.
    Frank A
  • 57.
    Franke U., Joss A
    Real-time stereo vision for urban traffic scene understanding
  • 58.
    Adelson E, Freeman W.
    The design and use of steerable filters
  • 59.
    Freund Y., Schapire R
    A decision-theoretic generalization of online learning and an application to boosting
  • 60.
    Friedman J
    Greedy function approximation: the gradient boosting machine
  • 61.
    Friedman J. H
    Greedy Function Approximation: a Gradient Boosting Machine.
  • 62.
    Friedman J. H
    Stochastic Gradient Boosting.
  • 63.
    Friedman J.H., Popescu B.E
    Importance Sampled Learning Ensembles
  • 64.
    Gavrila D. M., Giebel J., Munder S
    Vision-based pedestrian detection: the protector system
  • 65.
    Gavrila D.M
    Pedestrian detection from a moving vehicle
  • 66.
    Geronimo D. A
    Pyramid match kernels: Discriminative classification with sets of image features
  • 67.
    Darrell T, Grauman K.
    Pyramid match kernels: Discriminative classification with sets of image features
  • 68.
    Grubb G., Nilsson L., Rilbe M, Zelinsky A.
    3D vision sensing for improved pedestrian safety Intelligent Vehicles Symposium.
  • 69.
    Grunwald PD
    The Minimum Description Length Principle. Foreword by Jorma Rissanen. Adaptive Computation and Machine Learning.
  • 70.
    Friedman J, Hastie T., Tibshirani R.
    The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  • 71.
    Armingol J.M., Collado J.M., Escalera A, Hilario C.
    Pyramidal Image Analysis for Vehicle Detection
  • 72.
    Hama H, Hirose K., Torio T.
    Robust Extraction of Wheel Region for Vehicle Position Estimation using a Circular Fisheye Camera
  • 73.
    Horn B., Schunk B
    Determing Optical Flow
  • 74.
    Jensen R, Shen Q
    Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
  • 75.
    Favaro P., Jin H., Soatto S
    Real-time tracking and outlier rejection with changes in illumination
  • 76.
    Jurafsky D., Martin J.H
    Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Second Edition
  • 77.
    Kalal Z., Matas J, Mikolajczyk K.
    Forward-backward error: automatic detection of tracking failures
  • 78.
    Birchfield S. T, Kanhere N. K., Pundlik S. J.
    Vehicle Segmentation and Tracking from a Low-Angle Off-Axis Camera
  • 79.
    Ke Y., Sukthankar R
    PCA-SIFT: A more distinctive representation for local image descriptors
  • 80.
    Kilian Q. Weinberger, Lawrence K
    Saul Distance Metric Learning for Large Margin Nearest Neighbor Classification
  • 81.
    Kim H.J, Kim J.B., Lee C.W., Lee K.M., Yun T.S.
    Wavelet-based Vehicle Tracking for Automatic Traffic Surveillance
  • 82.
    Lazebnik S., Ponce J, Schmid C.
    Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
  • 83.
    Chiu T.H., Hung Y.P, Lee P.H., Lin Y.L.
    Real-time pedestrian and vehicle detection in video using 3D cues
  • 84.
    Cornelis K., Cornelis N., Leibe B., Van Gool L
    Dynamic 3D scene analysis from a moving vehicle
  • 85.
    Leibe B., Leonardis A., Schiele B
    Robust Object Detection with Interleaved Object Categoization and Segmentation
  • 86.
    Leong C.W., Mihalcea R
    Measuring the semantic relatedness between words and images
  • 87.
    Abbass HA, Liu B, McKay B
    Classification rule discovery with ant colony optimization
  • 88.
    Lowe D
    Distinctive image features from scale-invariant keypoints
  • 89.
    Kanade T., Lucas B.D.
    An iterative image registration technique with an application to stereo vision
  • 90.
    Chum O., Matas J., PajdlaT, Urban M.
    Robust wide baseline stereo from maximally stable extremal regions
  • 91.
    Michalski SR, Pietrzykowski J
    iAQ: A program that discovers rules, AAAI-07 AI Video Competition
  • 92.
    Mikolajczyk K., Schmid C. A
    Performance Evaluation of Local Descriptors
  • 93.
    Mikolajczyk K., Schmid C
    Scale and affine invariant interest point detectors
  • 94.
    Mitchell T
    Machine Learning.
  • 95.
    Chikalov I, Moshkov M
    On algorithm for constructing of decision trees with minimal depth. Fundamenta Informaticae
  • 96.
    Moshkov M, Piliszczuk M, Zielosko B
    Partial Covers, Reducts and Decision Rules in Rough Sets: Theory and Applications
  • 97.
    Moshkov M, Zielosko B
    Combinatorial Machine Learning: A Rough Set Approach.
  • 98.
    Gavrila D.M, Munder S.
    An experimental study on pedestrian classification
  • 99.
    A., A.S, J.J., Lim, Myung Jin Choi, Torralba, Willsky
    Exploiting Hierarchical Contex on a large database of object categories
  • 100.
    Neubeck A., Van Gool L
    Efficient Non-Maximum Supression
  • 101.
    Nguyen HS
    Approximate Boolean reasoning: foundations and applications in data mining
  • 102.
    Basu S., Bayardo R. J, Herbach J. S., Panda B.
    PLANET: Massively parallel learning of tree ensembles with MapReduce.
  • 103.
    Huang Q., Jiang S, Pang J.
    Multiple instance boost using graph embedding based decision stump for pedestrian detection
  • 104.
    Papageorgiou C., Poggio T
    A trainable system for object detection
  • 105.
    Pawlak Z
    Rough Sets – Theoretical Aspects of Reasoning about Data
  • 106.
    Pawlak Z, Skowron A
    Rough sets and Boolean reasoning
  • 107.
    Choudhury T. Face, Pentland A.
    Recognition for Smart Environments
  • 108.
    Quinlan J.R
    Induction of decision trees
  • 109.
    Quinlan JR
    C4.5: Programs for Machine Learning,
  • 110.
    Rissanen J
    Modeling by shortest data description.
  • 111.
    Drummond T, Rosten E.
    Machine Learning for high-speed corner detection
  • 112.
    Mori G, Sabzmeydani P.
    Detecting pedestrians by learning shapelet features
  • 113.
    Schapire R
    The boosting approach to machine learning
  • 114.
    Shi J., Tomasi C
    Good features to track
  • 115.
    Blake A., Cipolla R, Shotton J.
    Contour-based Learning for Object Detection
  • 116.
    Skowron A
    Rough sets in KDD
  • 117.
    Rauszer C, Skowron A
    The discernibility matrices and functions in information systems
  • 118.
    Slezak D, Wroblewski J
    Order-based genetic algorithms for the search of approximate entropy reducts.
  • 119.
    Boyle R, Hlavac V., Sonka M.
    Image Processing, Analysis and Machine Vision.
  • 120.
    Szeliski R
    Computer Vision: Algorithms and Applications.
  • 121.
    Aggarwal J.K, Tamersoy B.
    Robust Vehicle Detection for Tracking in Highway Surveillance Videos using unsupervised Learning
  • 122.
    Fua P, Lepetit V., Tola E.
    A Fast Local Descriptor for Dense Matching
  • 123.
    Freeman W.T., Murphy K.P., Rubin M.A, Torralba A.
    Contex-based Vision System for Place and Object Recognition
  • 124.
    Mikolajczyk K, Tuytelaars T.
    Local Invariant Feature Detectors: A Survey
  • 125.
    Agrawal K., Paykin J, Tyree S., Weinberger K. Q.
    Parallel boosted regression trees for web search ranking.
  • 126.
    Chandler D.M, Vasu L.
    Vehicle Tracking Using a Human-Vision-Based Model of Visual Similarity
  • 127.
    Jones M., Snow D, Viola P.
    Detecting pedestrians using patterns of motion and appearance
  • 128.
    Jones M.J, Viola P.
    Rapid object detection using a boosted cascade of simple features
  • 129.
    Jones M.J, Viola P.
    Robust Real-Time Face Detection
  • 130.
    Jones M.J., Snow D, Viola P.
    Detecting pedestrians using patterns of motion and appearance
  • 131.
    Majer N., Schiele B, Schindler K., Walk S.
    New features and insights for pedestrian detection
  • 132.
    Wallace CS
    Statistical and Inductive Inference by Minimum Message Length.
  • 133.
    Schiele B, Wojek C.
    A performance evaluation of single and multi-feature people detection
  • 134.
    Schiele B, Walk S., Wojek C.
    Multi-cue onboard pedestrian detection
  • 135.
    Wroblewski J
    Finding minimal reducts using genetic algorithm.
  • 136.
    Nevatia R, Wu B.
    Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors
  • 137.
    Frank E, Xu X.
    Logistic regression and boosting for labeled bags of instances
  • 138.
    Grossman R., Yike G.
    High Performance Data Mining: Scaling Algorithms, Applications and Systems
  • 139.
    Nevatia R, Wu B., Zhang L.
    Pedestrian detection in infrared images based on local shape features
  • 140.
    Bebis G., Miller R, Zehang Sun
    On-road vehicle detection using Gabor filters and support vector machines
  • 141.
    Avidan S., Cheng K, Yeh M., Zhu Q.
    Fast Human Detection Using a Cascade of Histograms of Oriented Gradients
  • 142.
    Chikalov I, Moshkov M, Zielosko B
    Optimization of decision rules based on methods of dynamic programming
  • 143.
    Вапник В.Н., Червоненкис А.Я
    Теория распознавания образов. Статистические проблемы обучения.
  • 144.
    Дружков П. Н., Золотых Н. Ю., Половинкин А.Н
    Параллельная реализация алгоритма предсказания с помощью модели градиентного бустинга деревьев решений
  • 145.
    Дружков П.Н., Золотых Н.Ю., Половинкин А.Н
    Программная реализация алгоритма градиентного бустинга деревьев решений.
  • 146.
    Котов Ю.Б
    Новые математические подходы к задачам медицинской диагностики.
  • 147.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход
  • 148.
    Чубукова И. А
    Data Mining: учебное пособие
  • 149.
    A, and Zisserman, Fergus, P., Perona, R.
    A sparse object category model for efficient learning and exhaustive recognition
  • 150.
    A, Fergus, P. and Zisserman, R. and Perona
    Object Class Recognition by Unsupervised Scale-Invariant Learning
  • 151.
    and Huttenlocher, Crandall, D, D., Felzenszwalb, P.
    Spatial priors for part-based recognition using statistical models.
  • 152.
    D.P, Felzenszwalb, P. F. and Huttenlocher
    Pictorial structures for object recognition.
  • 153.
    and Bray, C, C. R., Csurka, Dance, Fan, G., J., L., Willamowski
    Visual categorization with bags of keypoints
  • 154.
    B, Bouchard, G. and Triggs
    Hierarchical part-based visual object categorization
  • 155.
    Carneiro, D, G. and Lowe
    Sparse flexible models of local features
  • 156.
    Bishop, C. M
    Pattern Recognition and Machine Learning
  • 157.
    Fischler, M. A. and Elschlager, R. A
    The representation and matching of pictorial structures
  • 158.
    J. Winn and A. Criminisi, S. Savarese
    Discriminative Object Class Models of Appearance and Shape by Correlatons
  • 159.
    Fei-Fei, J.C., L, Niebles
    A hierarchical model of shape and appearance for human action classification
  • 172.
    Стокман Дж, Шапиро Л.
    Компьютерное зрение.
  • 173.
    Chris Stauffer
  • 174.
    B. Vachon, F. El Baf, T. Bouwmans
    Background Modeling using Mixture of Gaussians for Foreground Detection -
  • 175.
    A. P. Dempster, D. B. Rubin, N. M. Laird
    Maximum Likelihood from Incomplete Data via the EM Algorithm
  • 176.
    Szeliski R
    Computer Vision: Algorithms and Applications.
  • 177.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход.
  • 178.
    D.Nister
    Preemptive RANSAC for live structure and motion estimation
  • 179.
    Bradski G., Kaehler A
    Learning OpenCV Computer Vision with OpenCV
  • 180.
    Boyle R, Hlavac V., Sonka M.
    Image Processing, Analysis and Machine
  • 181.
    Leibe B., Leonardis A., Schiele B. Robust Object
    Detection with Interleaved Object Categoization and Segmentation.
  • 182.
    Chiu T.H., Hung Y.P, Lee P.H., Lin Y.L.
    Real-time pedestrian and vehicle detection in video using 3D cues
  • 183.
    M. Van Droogenbroeck ViBe, O. Barnich
    Auniversal background subtraction algorithm for video sequences
  • 184.
    Horn B., Schunk B
    Determing Optical Flow
  • 185.
    Adelson E. H, J. Y. A., Wang
  • 186.
    Kumar M.P., Torr P.H.S., Zisserman A
    Learning Layered Motion Segmentations of Video
  • 187.
    Javed O., Shah M, Yilmaz A.
    Object tracking: A survey
  • 188.
    Backer E, Reinders M., Veenman C.
    Resolving motion correspondence for densely moving points.
  • 189.
    Dezfoulian MirHossein, Fathi M., Salarpour A.
    Vehicle tracking using Kalman filter and features
  • 190.
    Baojun Zh., Dan S., Linbo T. A Tracking
    Algorithm Based on SIFT and Kalman Filter
  • 191.
    Ning Li
    Corner feature based object tracking using Adaptive Kalman Filter
  • 192.
    Blake A, Isard M.
    Condensation - conditional density propagation for visual tracking
  • 193.
    Bergman N., Forssell U., Gunnarsson F., Gustafsson F., Jonas Jansson, Karlsson R., Nordlund P.J
    Particle Filters for Positioning, Navigation and Tracking
  • 194.
    Comaniciu D., Meer P, Ramesh V.
    Real-time tracking of non-rigid objects using mean shift
  • 195.
    Bruns E., Exner D., Grundhofer A, Kurz D.
    Fast and robust CAMShift tracking
  • 196.
    Horn B.K.P., Schunck B.G
    Determining optical flow
  • 197.
    Shi J., Tomasi C.
    Good features to track
  • 198.
    Favaro P., Jin H., Soatto S
    Real-time tracking and outlier rejection with changes in illumination
  • 199.
    Barron J. L., Beauchemin S. S, Fleet D. J.
    Performance of optical flow techniques
  • 200.
    Freidman J, Hastie T., Tibshirani R.
    The elements of statistical learning
  • 201.
    Г. Нуссбаумер
    Быстрое преобразование Фурье и алгоритмы вычисления сверток
  • 202.
    Дж. Голуб, Ч. Ван Лоун
    Матричные вычисления
  • 207.
    Hartley R., Zisserman A
    Multiple View Geometry in Computer
  • 208.
  • 211.
  • 213.
  • 218.
    Bradski G., Kaehler A
    Learning OpenCV.
  • 235.
    Jones M.J. Robust, Viola P.
    Real-Time Face Detection
  • 236.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D
    Object Detection with Discriminatively Trained Part Based Models
  • 237.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход
  • 238.
    Стокман Дж, Шапиро Л.
    Компьютерное зрение
  • 239.
    Chin, Cho-Huak, Roland T, Teh
    On the detection of dominant points on digital curves
  • 240.
    Bradski G., Kaehler A
    Learning OpenCV Computer Vision with OpenCV Library
  • 241.
    Стокман Дж, Шапиро Л.
    Компьютерное зрение.
  • 242.
    Понс Ж, Форсайт Д.
    Компьютерное зрение. Современный подход
  • 243.
    Canny J
    A computational approach to edge detection
  • 252.
    Friedman J, Hastie T., Tibshirani R.
    The Elements of Statistical Learning
  • 253.
    Breiman L., Friedman J.H., Olshen R.A., Stone C.J
    Classification and Regression Trees
  • 254.
    Druzhkov P.N., Eruhimov V.L., Kozinov E.A., Kustikova V.D., Meyerov I.B., Polovinkin A.N, Zolotykh N.Yu.
    New object detection features in the OpenCV Library
  • 255.
    Ke Y., Lindeberg T, Sukthankar R
    Feature detection with automatic scale selection
  • 256.
    Breiman L
    Random Forests
  • 257.
    Arthur D., Vassilvitskii S
    k-means++: the advantages of careful seeding
  • 258.
  • 260.
    Agrawal M., Blas M, Konolige K.
    Censure: Center surround extremas for realtime feature detection and matching
  • 261.
    Bay H., Ess A., Gool L.V, Tuytelaars T.
    SURF: speed up robust features
  • 262.
    Bradski G., Kaehler A
    Learning OpenCV Computer Vision with OpenCV
  • 263.
    Calonder M., Fua P., Lepetit V., Strecha C.
  • 264.
    Drummond T. Machine, Lindeberg T, Rosten E.
    Learning for high-speed corner detection
  • 265.
    Drummond T. Machine, Friedman J, Hastie T., Rosten E., Tibshirani R.
  • 266.
    Friedman J, Hastie T., Ke Y., Sukthankar R, Tibshirani R.
    PCA-SIFT: A more distinctive representation for local image descriptors
  • 267.
    Lowe D
  • 268.
    Chum O., Matas J., PajdlaT, Urban M.
  • 269.
    Mikolajczyk K., Schmid C
  • 270.
    Bradski G, Konolige K., Rabaud V., Rublee E.
  • 271.
    Szeliski R
  • 273.
  • 274.
  • 278.
  • 279.
    документации OpenCV
  • 280.
    Стокман Дж., Шапиро Л.
    Компьютерное зрение
  • 281.
    Boyle R, Hlavac V., Sonka M.
    Image Processing, Analysis and Machine Vision
  • 282.
  • 286.
  • 287.
  • 288.
  • 290.
    Кормен Т., Лейзерсон Ч., Ривест Р
  • 291.
    Coppersmith D., Winograd S
  • 293.
    Bik A.J.C., Gerber R., Smith K.B., Tian X
  • 295.
    Вудхалл А, Таненбаум Э.
  • 296.
    Hennessy J., Patterson D
  • 297.
    Понс Ж, Форсайт Д.
  • 298.
    Szeliski R
    Computer Vision: Algorithms and Applications
  • 299.
    P. Viola and M. Jones
    Rapid object detection using a boosted cascade of simple features
  • 300.
  • 301.
  • 302.
  • 303.
  • 306.
    Понс Ж, Форсайт Д.
  • 307.
  • 308.
    Мееров И.Б, Сиднев А.А., Сысоев А.В.
  • 309.
    Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D., Мееров И.Б, Сиднев А.А., Сысоев А.В.
  • 310.
    Felzenszwalb P. F., Girshick R. B., McAllester D., P. Viola and M. Jones, Ramanan D.
    Object Detection with Discriminatively Trained Part Based Models
  • 311.
    Intel® Threading Building Blocks. Tutorial. Version 1.6
  • 312.
    А. А., А. В. Сысоев, И. Б. Мееров, Сиднев
    Библиотека Intel Threading Building Blocks – краткое описание. Материалы образовательного комплекса «Технологии разработки параллельных программ».
  • 313.
    Корняков К. В., Кустикова В. Д., Мееров И. Б., Сиднев А. А., Сысоев А. В., Шишков А. В
  • 314.
  • 315.
    Bik A.J.C., Gerber R., Smith K.B., Tian X
    The Software Optimization Cookbook. High-Performance Recipes for the Intel® Architecture
  • 316.
    Касперски К
    Техника оптимизации программ. Эффективное использование памяти
  • 317.
    Druzhkov P. N., Eruhimov V. L., Kozinov E. A., Kustikova V. D., Meyerov I. B., Polovinkin A. N., Zolotykh N. Yu
    On some new object detection features in OpenCV Library
  • 318.
  • 320.
    D.P. Huttenlocher, P.F. Felzenszwalb
  • 328.
    Antonio Torralba, Kevin P. Murphy, William T. Freeman and Mark A
  • 330.
    D. M. Gavrila and V. Philomin
  • 331.
    and B. Schiele, B. Leibe, E. Seemann, K. Mikolajczyk
  • 332.
    and J. Malik, C. Gu, J. J. Lim, P. Arbelaez
  • 333.
    Dalal N., Triggs B
  • 334.
    Enzweiler M., Gavrila D.M.
    Monocular Pedestrian Detection: Survey and Experiments
  • 335.
    Dollar P., Perona P. Pedestrian Detection:, Schiele B., Wojek C.
    An Evaluation of the State of the Art
  • 336.
    Felzenszwalb P.F., Girshick R.B., McAllester D., Ramanan D
    Image Processing, Analysis and Machine Vision
  • 337.
    Druzhkov P.N., Eruhimov V.L., Kozinov E.A., Kustikova V.D., Meyerov I.B., Polovinkin A.N., Zolotykh N.Yu.
  • 341.
Андрей Терёхин
Андрей Терёхин

Нахожу в тесте вопросы, которые в принципе не освещаются в лекции. Нужно гуглить на других ресурсах, чтобы решить тест, или же он всё же должен испытывать знания, полученные в ходе лекции?

Демянчик Иван
Демянчик Иван

В главе 14 мы видим понятие фильтра, но не могу разобраться, чем он является в теории и практике.

" Искомый объект можно описать с помощью фильтра F= \lbrace f_{x',y'},x' \in \lbrace0, ...,w_f \rbrace , y' \in \lbrace 0,...,h_f \rbrace \rbrace "