Опубликован: 26.04.2005 | Уровень: для всех | Доступ: платный | ВУЗ: Национальный исследовательский ядерный университет «МИФИ»
Лекция 10:

Алгоритмы сети Ethernet/Fast Ethernet

< Лекция 9 || Лекция 10: 1234 || Лекция 11 >

Таким образом, получается, что метод CSMA/CD не только не предотвращает коллизии, наоборот, он их предполагает и даже провоцирует, а затем разрешает. Например, если заявки на передачу возникли у нескольких абонентов во время занятости сети, то после ее освобождения все эти абоненты одновременно начнут передачу и образуют коллизию. Коллизии появляются и в случае свободной сети, если заявки на передачу возникают у нескольких абонентов одновременно. В обоих случаях под словом "одновременно" понимается "в пределах интервала двойного прохождения сигнала по сети", то есть в пределах 512-битовых интервалов. Точно так же в пределах 512-битовых интервалов обнаруживаются все коллизии в сети.

Если коллизия обнаруживается раньше 480 – битового интервала, то в результате в сети образуются пакеты, длина которых меньше нижнего установленного предела в 512 – битовых интервалов (64 байта) даже с добавлением сигнала ПРОБКА. Такие пакеты (кадры) называются карликовыми (runt frames). Если же коллизия обнаруживается в конце 512-битового интервала (после 480 – битового интервала), то в результате может получиться пакет допустимой длины (вместе с сигналом ПРОБКА). Такие пакеты называть карликовыми не совсем корректно. Сигнал ПРОБКА, образующий 32 последних бита пакета, выступает в виде контрольной суммы пакета. Однако вероятность того, что ПРОБКА будет соответствовать правильной контрольной сумме пакета, бесконечно мала (примерно 1 случай на 4,2 миллиарда).

Коллизии (наложения пакетов в процессе передачи) могут и должны обнаруживаться до окончания передачи. Действительно, анализ принятого в конце каждого пакета поля FCS, фактически содержащего помехоустойчивый циклический код CRC (Cyclic Redundancy Check), привел бы к неоправданному снижению скорости передачи.

Практически коллизии обнаруживаются либо самим передающим абонентом, либо повторителями в сети, возможно, задолго до окончания передачи заведомо испорченного пакета. Если учесть, что длина пакетов в локальной сети типа Ethernet / Fast Ethernet может лежать в диапазоне от 64 до 1518 байт, то досрочное прекращение передачи и освобождение линии означает заметное повышение эффективности использования ее пропускной способности.

Первым признаком возникновения коллизии является факт получения сигнала ПРОБКА передающим абонентом во время передачи пакета. Другие признаки связаны с неверным форматом пакетов, передача которых была досрочно прекращена из-за возникновения коллизии:

  • длина пакета меньше 64 байт (512 бит);
  • пакет имеет неверную контрольную сумму FCS (точнее, неверный циклический код );
  • длина пакета не кратна восьми.

Наконец, в таких сетях как Ethernet используется код Манчестер-II и аппаратный способ определения коллизии, основанный на анализе отклонения среднего значения сигнала от нуля.

Даже при загруженной сети для одного абонента число подряд следующих коллизий обычно не превышает 3. Этому способствует случайный характер возникновения запроса на передачу и случайная дискретная величина отсрочки следующей попытки передачи при возникновении коллизии. Число коллизий тем больше, чем больше диаметр (размер) сегмента и чем дальше расположены друг от друга абоненты с интенсивным трафиком.

Оценка производительности сети

Вопрос об оценке производительности сетей, использующих случайный метод доступа CSMA/CD, не очевиден из-за того, что существуют несколько различных показателей. Прежде всего, следует упомянуть три связанные между собой показателя, характеризующие производительность сети в идеальном случае – при отсутствии коллизий и при передаче непрерывного потока пакетов, разделенных только межпакетным интервалом IPG. Очевидно, такой режим реализуется, если один из абонентов активен и передает пакеты с максимально возможной скоростью. Неполное использование пропускной способности в этом случае связано, кроме существования интервала IPG, с наличием служебных полей в пакете Ethernet (см. рис. 10.2).

Пакет максимальной длины является наименее избыточным по относительной доле служебной информации. Он содержит 12304 бит (включая интервал IPG), из которых 12000 являются полезными данными.

Поэтому максимальная скорость передачи пакетов (или, иначе, скорость в кабелеwire speed) составит в случае сети Fast Ethernet

10^{8} \ бит/с/ \ 12304 бит \approx  8127,44 \ пакет/с.

Пропускная способность представляет собой скорость передачи полезной информации и в данном случае будет равна

8127,44 \ пакет/с \times 1500 \ байта \approx  12,2 \ Мбайт/с.

Наконец, эффективность использования физической скорости передачи сети, в случае Fast Ethernet равной 100 Мбит/с, по отношению только к полезным данным составит

8127,44 \ пакет/с \times 12000 \ бит/ 10^{8} \ бит/с \approx  98\%.

При передаче пакетов минимальной длины существенно возрастает скорость в кабеле, что означает всего лишь факт передачи большого числа коротких пакетов. В то же время пропускная способность и эффективность заметно (почти в два раза) ухудшаются из-за возрастания относительной доли служебной информации.

Для реальных сетей, в частности Fast Ethernet с большим числом активных абонентов N пропускная способность на уровне 12,2 Мбайт/с для какого-либо абонента является пиковым, редко реализуемым значением. При одинаковой активности всех абонентов средняя пропускная способность для каждого из них составит 12,2/N Мбайт/с, а на самом деле может оказаться еще меньше из-за возникновения коллизий, ошибок в работе сетевого оборудования и влияния помех (в случае работы локальной сети в условиях, когда кабельная система подвержена влиянию больших внешних электромагнитных наводок). Влияние помех, так же как и поздних конфликтов (late collision) в некорректных сетях, отслеживается с помощью анализа поля FCS пакета.

Для реальных сетей более информативен такой показатель производительности, как показатель использования сети (network utilization), который представляет собой долю в процентах от суммарной пропускной способности (не поделенной между отдельными абонентами). Он учитывает коллизии и другие факторы. Ни сервер, ни рабочие станции не содержат средств для определения показателя использования сети, этой цели служат специальные, не всегда доступные из-за высокой стоимости такие аппаратно-программные средства, как анализаторы протоколов.

Считается, что для загруженных систем Ethernet и Fast Ethernet хорошим значением показателя использования сети является 30%. Это значение соответствует отсутствию длительных простоев в работе сети и обеспечивает достаточный запас в случае пикового повышения нагрузки. Однако если показатель использования сети значительное время составляет 80...90% и более, то это свидетельствует о практически полностью используемых (в данное время) ресурсах, но не оставляет резерва на будущее. Впрочем, для реальных сетей, к примеру Fast Ethernet, это скорее гипотетическая ситуация.

На рис. 10.2 приведена зависимость показателя использования сети от времени при условии, что предложенная нагрузка (offered load), то есть текущий запрос на пропускную способность, линейно возрастает. Сначала показатель использования сети также линейно повышается, но затем конкуренция за владение средой передачи порождает коллизии, и рассматриваемый показатель достигает максимума (точка полной нагрузки на графике). При дальнейшем увеличении предложенной нагрузки показатель использования сети начинает уменьшаться, особенно резко после точки насыщения. Это "плохая" область работы сети. Считается, что сеть работает хорошо, если и предложенная нагрузка, и показатель использования сети высоки.

Зависимость показателя использования сети от времени при линейном увеличении предложенной нагрузки (1 – наилучшая область работы, 2 – приемлемая, 3 – плохая)

Рис. 10.2. Зависимость показателя использования сети от времени при линейном увеличении предложенной нагрузки (1 – наилучшая область работы, 2 – приемлемая, 3 – плохая)

Некоторые авторы предлагают для широко распространенного понятия "перегрузка" (overload) сетей на основе метода доступа CSMA/CD следующее определение: сеть перегружена, если она не может работать при полной нагрузке в течение 80% своего времени (при этом 20% времени показатель использования сети недопустимо мал из-за коллизий ). После точки насыщения наступает крах Ethernet (Ethernet collapse), когда возрастающая предложенная нагрузка заметно превышает возможности сети. Стоит заметить, что реально маловероятно, чтобы предложенная нагрузка постоянно увеличивалась во времени и надолго превышала пропускную способность сети типа Fast Ethernet. Более того, любой детерминированный метод доступа не может обеспечить реализацию сколь угодно большой предложенной нагрузки, существующей продолжительное время. Если данный вариант детерминированного метода доступа не использует, как и метод CSMA/CD, систему приоритетов, то никакой из абонентов не может захватить сеть более чем на время передачи одного пакета, однако передача данных отдельными пакетами с долгими паузами между ними ведет к снижению скорости передачи для каждого абонента. Преимущество детерминированных методов состоит в возможности простой организации системы приоритетов, что полезно из-за наличия определенной иерархии в любом крупном коллективе.

< Лекция 9 || Лекция 10: 1234 || Лекция 11 >
Алексей Подсадников
Алексей Подсадников

Могу ли я получить сертификат о повышении квалификации если записывался на курс, не как на повышение квалификации.

Курс пройден.

И сколько действуют результаты курса?

Валерий Умаев
Валерий Умаев
Георгий Данилов
Георгий Данилов
Россия, г. Москва
Александр Паринов
Александр Паринов
Россия, г. Омутнинск