Опубликован: 26.04.2007 | Уровень: специалист | Доступ: платный | ВУЗ: Нижегородский государственный университет им. Н.И.Лобачевского
Лекция 16:

Дележ, отвечающий аксиомам Нэша

< Лекция 15 || Лекция 16: 1234 || Лекция 17 >
Аннотация: Единственность дележа, удовлетворяющего аксиомам Нэша. Сделки с побочными платежами.

Теорема 3.1. Существует единственная функция \varphi из (14.18), определенная для всех задач о сделках, задаваемых тройками (S,u*,v*) и удовлетворяющих аксиомам (14.15)-(14.17), (14.19), (14.21), (14.22). При этом предполагается, что хотя бы для одной пары (u,v) из замкнутого, ограниченного и выпуклого множества S, входящего в определение задачи, справедливо (может быть нестрогое) доминирование

(u,v) \ge (u^\ast, v^\ast). ( 15.1)

Доказательство теоремы опирается на следующие леммы.

Лемма 3.1. Если множество S содержит точку (u,v), такую, что

u > u^\ast,\quad v > v^\ast, ( 15.2)
т.е. если доминирование (15.1) является строгим, то функция
g(u,v) = (u - u^\ast)(v - v^\ast) ( 15.3)
достигает максимума на множестве
S_0 = \{(u,v) \in S\colon u \ge u^\ast\} ( 15.4)
в единственной точке (u^\circ, v^\circ).

Доказательство Поскольку функция (15.3) является непрерывной, а непустое множество (15.4) - ограниченным и замкнутым, то существует максимум

g(u^\circ, v^\circ) = \max \{g(u,v)\colon (u,v) \in S_0\} > 0. ( 15.5)
Правое неравенство в (15.5) является следствием условий (15.2) и определений (15.3), (15.4).

Допустим, что существует еще одна точка (u',v'), максимизирующая функцию g на S0. Тогда

(u' - u^\ast)(v' - v^\ast) = (u^\circ - u^\ast)(v^\circ - v^\ast), ( 15.6)
откуда, учитывая (15.2), получаем отношение:
\frac{u^\circ - u^\ast}{u' - u^\ast} = \frac{v' - v^\ast}{v^\circ - v^\ast}.

Поскольку точки (u^\circ, v^\circ) и (u', v') являются (по предположению) различными, то из (15.6) вытекают следствия:

\begin{gathered}
u' < u^\circ \to v' > v^\circ,\\
u' > u^\circ \to v' < v^\circ.
\end{gathered} ( 15.7)

Из выпуклости множества S0 следует справедливость включения

(\tilde{u}, \tilde{v}) = (\frac{1}{2}(u' + u^\circ), \frac{1}{2}(v' + v^\circ))\in S_0.
Покажем, что для точки (\tilde{u}, \tilde{v}) имеет место неравенство
g(\tilde{u}, \tilde{v}) > g(u^\circ, v^\circ), ( 15.8)
противоречащее определению точки (u^\circ, v^\circ) из (15.5), что доказывает единственность точки максимума функции g. Действительно,
\begin{gathered}
g(\tilde{u}, \tilde{v}) = \frac{1}{4}\left[(u' - u^\ast) +
(u^\circ - u^\ast)\right]\left[(v' - v^\ast) + (v^\circ -
v^\ast)\right]=\\ = \frac{1}{2}(u' - u^\ast)(v' - v^\ast) +
\frac{1}{2}(u^\circ -
u^\ast)(v^\circ - v^\ast) + \frac{1}{4}(u^\circ - u')(v' - v^\circ),
\end{gathered}
откуда, согласно (15.6) и (15.7), следует справедливость утверждения (15.8), противоречащего (15.5).

В дальнейшем мы покажем, что условия (15.5) определяют функцию \varphi из (14.18), и опишем графический прием для определения аргумента (u^\circ, v^\circ) из левой части (15.5).

Лемма 3.2. Пусть выполняются условия (15.2) и точка (u^\circ, v^\circ) удовлетворяет определению (15.5). Тогда множество S лежит под прямой линией, определяемой уравнением

h(u,v) = h(u^\circ,v^\circ), ( 15.9)
h(u,v) = (v^\circ - v^\ast)u + (u^\circ - u^\ast)v, ( 15.10)
и касающейся множества S в точке (u^\circ, v^\circ), т.е.
(\forall (u,v) \in S)\ h(u,v) \le h(u^\circ, v^\circ).

Доказательство. Допустим, что прямая (15.9) не является опорной для множества S в точке (u^\circ, v^\circ). Тогда существует такая точка (u', v')\in S, что

h(u', v') > h(u^\circ, v^\circ). ( 15.11)
Построим выпуклую линейную комбинацию:
(\tilde{u},\tilde{v}) = \varepsilon(u', v') + (1 -
\varepsilon)(u^\circ, v^\circ),\quad 0 \le \varepsilon \le 1,
которая принадлежит множеству S в силу его выпуклости. Поскольку (\tilde{u}, \tilde{v}) \to ({u}^\circ, v^\circ) при \varepsilon \to 0 и, согласно правому неравенству в (15.5), u^\circ > u^\ast, то при достаточно малых значениях \varepsilon > 0 справедливо включение (\tilde{u}, \tilde{v}) \in S_0.

Теперь покажем, что при достаточно малых значениях \varepsilon > 0 имеет место неравенство g(\tilde{u}, \tilde{v}) > g(u^\circ, v^\circ), противоречащее определению (15.5). Действительно,

\begin{multiline*}
g(\tilde{u}, \tilde{v}) = [u^\circ + \varepsilon(u' - u^\circ) - u^\ast]
[v^\circ + \varepsilon(v' - v^\circ) - v^\ast]) =\\
= (u^\circ - u^\ast)(v^\circ - v^\ast) +
\varepsilon^2(u' - u^\circ)(v' - v^\circ) + \\
+\varepsilon[(v^\circ - v^\ast)
(u' - u^\circ) + (u^\circ - u^\ast)(v' - v^\circ)],
\end{multiline*}
где, согласно (15.11), коэффициент при \varepsilon является положительным, а член, содержащий \varepsilon^2, - пренебрежимо малым при \varepsilon \to 0. Следовательно, прямая линия (15.9) является опорной к множеству S в точке (u^\circ, v^\circ).

< Лекция 15 || Лекция 16: 1234 || Лекция 17 >
Михаил Агапитов
Михаил Агапитов

Не могу найти  требования по оформлению выпускной контрольной работы по курсу профессиональной переподготовки "Менеджмент предприятия"

Подобед Александр
Подобед Александр

Я нажал кнопку "начать курс" и почти его уже закончил, но для получения диплома на бумаге, нужно его же оплатить? Как оплатить? 

Вячеслав Гримальский
Вячеслав Гримальский
Россия
Михаил Байков
Михаил Байков
Россия, Москва, Московский Авиационный Институт, 2009