Опубликован: 10.10.2005 | Уровень: специалист | Доступ: платный | ВУЗ: Московский физико-технический институт
Лекция 1:

Эволюция устройств внешней памяти и программных систем управления данными

Лекция 1: 1234567 || Лекция 2 >
Аннотация: В этой вводной лекции мы, прежде всего, обсудим предпосылки появления в компьютерах устройств внешней памяти, а также обоснуем принципиальную важность дисковых устройств с подвижными магнитными головками для организации информационных систем. Далее будут рассмотрены особенности организации и основное функциональное назначение одного из ключевых компонентов современных операционных систем – систем управления файлами. Наконец, в третьем разделе лекции мы покажем, почему возможностей файловых систем недостаточно для создания информационных программных систем. Будет продемонстрировано, что естественные требования информационных систем к средствам управления данными во внешней памяти приводят к необходимости наличия систем управления базами данных (СУБД). В ходе этого анализа будут определены основные черты, которыми должны обладать СУБД.
Ключевые слова: информационная система, память, устройство внешней памяти, ПО, доступ, частичный результат, оперативная память, внешняя память, программа, поддержка, магнитный диск с подвижными головками, архив, время выполнения, поиск, расстояние, прикладная программа, система управления файлами, файл, именованная область, отображение, значение, система управления базами данных, файловая система, IBM, последовательный файл, RSX, VMS, полное имя файла, Multics, корневая файловая система, монтирование файловой системы, мандат, идентификатор группы, многопользовательский режим, синхронизация параллельного доступа к данным и архитектуре "клиент-сервер", редактор связей, структуры хранения, Типовая, СУБД, ссылочная целостность, общее ограничение целостности, целостность данных, язык запросов к базе данных, полусоединение, транзакционное управление, журнализация, класс, приложение, вероятность, вывод, расходы, затраты, лицензирование

Устройства внешней памяти

В самом широком смысле информационная система представляет собой программный комплекс, функции которого состоят в поддержке надежного хранения информации в памяти компьютера, выполнении специфических для данного приложения преобразований информации и/или вычислений, предоставлении пользователям удобного и легко осваиваемого интерфейса. Обычно объемы данных, с которыми приходится иметь дело таким системам, достаточно велики, а сами данные обладают достаточно сложной структурой. Классическими примерами информационных систем являются банковские системы, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т. д.

О надежном и долговременном хранении информации можно говорить только при наличии запоминающих устройств, сохраняющих информацию после выключения электропитания. Оперативная (основная) память этим свойством обычно не обладает. В первые десятилетия развития вычислительной техники использовались два вида устройств внешней памяти: магнитные ленты и магнитные барабаны. При этом емкость магнитных лент была достаточно велика, но по своей природе они обеспечивали последовательный доступ к данным. Емкость магнитной ленты пропорциональна ее длине. Чтобы получить доступ к требуемой порции данных, нужно в среднем перемотать половину ее длины. Но чисто механическую операцию перемотки нельзя выполнить очень быстро. Поэтому быстрый произвольный доступ к данным на магнитной ленте, очевидно, невозможен.

Магнитный барабан представлял собой массивный металлический цилиндр с намагниченной внешней поверхностью и неподвижным пакетом магнитных головок. Такие устройства обеспечивали возможность достаточно быстрого произвольного доступа к данным, но позволяли сохранять сравнительно небольшой объем данных. Быстрый произвольный доступ осуществлялся благодаря высокой скорости вращения барабана и наличию отдельной головки на каждую дорожку магнитной поверхности; ограниченность объема была обусловлена наличием всего одной магнитной поверхности.

Указанные ограничения не очень существенны для систем численных расчетов. Обсудим более подробно, какие реальные потребности возникают у разработчиков систем численных расчетов. Прежде всего, для получения требуемых результатов серьезные вычислительные программы должны проработать достаточно долгое время (недели, месяцы и даже, может быть, годы). Наличие гарантий надежности со стороны производителей аппаратных компьютерных средств не избавляет программистов от необходимости использования программного сохранения частичных результатов вычислений, чтобы при возникновении непредвиденных сбоев аппаратуры можно было продолжить выполнение расчетов с некоторой контрольной точки. Для сохранения промежуточных результатов идеально подходят магнитные ленты: при выполнении процедуры установки контрольной точки данные последовательно сбрасываются на ленту, а при необходимости перезапуска от сохраненной контрольной точки данные также последовательно с ленты считываются.

Вторая традиционная потребность численных программистов – максимально большой объем оперативной памяти. Большая оперативная память требуется, во-первых, для того, чтобы обеспечить программе быстрый доступ к большому количеству обрабатываемых данных. Во-вторых, сложные вычислительные программы сами могут иметь большой объем. Поскольку объем реально доступной в ЭВМ оперативной памяти всегда являлся недостаточным для удовлетворения текущих потребностей вычислений, требовалась быстрая внешняя память для организации оверлеев и/или виртуальной памяти. Мы не будем здесь вдаваться в детали организации этих механизмов программного расширения оперативной памяти, но заметим, что для этого идеально подходили магнитные барабаны. Они обеспечивают быстрый доступ к внешней памяти, а для расширения оперативной памяти одной программы (сложные вычислительные программы, как правило, выполняются на компьютере в одиночку) большой объем внешней памяти не требуется.

Далее заметим, что, даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти, чтобы программа работала как можно быстрее. Развитая поддержка работы с внешней памятью со стороны общесистемных программных средств не обязательна, а иногда и вредна, поскольку приводит к дополнительным накладным расходам аппаратных ресурсов.

Однако для информационных систем, в которых объем постоянно хранимых данных определяется спецификой бизнес-приложения, а потребность в текущих данных определяется пользователем приложения, одних только магнитных барабанов и лент недостаточно. Емкость магнитного барабана просто не позволяет долговременно хранить данные большого объема. Что же касается лент, то представьте себе состояние человека, который, стоя у билетной кассы, должен дождаться полной перемотки магнитной ленты. Естественным требованием к таким системам является обеспечение высокой средней скорости выполнения операций при наличии больших объемов данных.

Именно требования к устройствам внешней памяти со стороны бизнес-приложений вызвали появление устройств внешней памяти со съемными пакетами магнитных дисков и подвижными головками чтения/записи, что явилось революцией в истории вычислительной техники. Эти устройства памяти обладали существенно большей емкостью, чем магнитные барабаны (за счет наличия нескольких магнитных поверхностей), обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь архив данных практически неограниченного объема.

Магнитные диски представляют собой пакеты магнитных пластин (поверхностей), между которыми на одном рычаге двигается пакет магнитных головок (рис. 1.1). Шаг движения пакета головок является дискретным, и каждому положению пакета головок логически соответствует цилиндр пакета магнитных дисков. На каждой поверхности цилиндр "высекает" дорожку, так что каждая поверхность содержит число дорожек, равное числу цилиндров. При разметке магнитного диска (специальном действии, предшествующем использованию диска) каждая дорожка размечается на одно и то же количество блоков; таким образом, предельная емкость каждого блока составляет одно и то же число байтов. Для произведения обмена с магнитным диском на уровне аппаратуры нужно указать номер цилиндра, номер поверхности, номер блока на соответствующей дорожке и число байтов, которое нужно записать или прочитать от начала этого блока.

Грубая схема дискового устройства памяти с подвижными головками

Рис. 1.1. Грубая схема дискового устройства памяти с подвижными головками

При выполнении обмена с диском аппаратура выполняет три основных действия: подвод головок к нужному цилиндру (обозначим время выполнения этого действия как tпг ), поиск на дорожке нужного блока (время выполненияtпб ) и собственно обмен с этим блоком (время выполненияtоб ). Тогда, как правило, tпг>>tпб>>tоб, потому что подвод головок – это механическое действие, причем в среднем нужно переместить головки на расстояние, равное половине радиуса поверхности, а скорость передвижения головок не может быть слишком большой по физическим соображениям. Поиск блока на дорожке требует прокручивания пакета магнитных дисков в среднем на половину длины внешней окружности; скорость вращения диска может быть существенно больше скорости движения головок, но она тоже ограничена законами физики. Для выполнения же обмена нужно прокрутить пакет дисков всего лишь на угловое расстояние, соответствующее размеру блока. Таким образом, из всех этих действий в среднем наибольшее время занимает первое, и поэтому существенный выигрыш в суммарном времени обмена при считывании или записи только части блока получить практически невозможно.

С появлением магнитных дисков началась история систем управления данными во внешней памяти. До этого каждая прикладная программа, которой требовалось хранить данные во внешней памяти, сама определяла расположение каждой порции данных на магнитной ленте или барабане и выполняла обмены между оперативной и внешней памятью с помощью программно-аппаратных средств низкого уровня (машинных команд или вызовов соответствующих программ операционной системы). Такой режим работы не позволял или очень затруднял поддержание на одном внешнем носителе нескольких архивов долговременно хранимой информации. Кроме того, каждой прикладной программе приходилось решать проблемы именования частей данных и структуризации данных во внешней памяти.

Лекция 1: 1234567 || Лекция 2 >
Nikolay Karasev
Nikolay Karasev

Хотелось бы иметь возможность читать текст сносок при использовании режима "Версия для печати"
 

Александра Каева
Александра Каева
Евгений Вершинин
Евгений Вершинин
Россия, Нижний Новгород, Нижегородский государственный технический университет, 2008
Aleksandr Arshinskyi
Aleksandr Arshinskyi
Россия