Ошибки в тестах! |
Методология построения экспертных систем
Примеры экспертных систем
Для начала совершим краткий экскурс в историю создания ранних и наиболее известных ЭС. В большинстве этих ЭС в качестве СПЗ использовались системы продукций (правила) и прямая цепочка рассуждений. Медицинская ЭС MYCIN разработана в Стэнфордском университете в середине 70-х годов для диагностики и лечения инфекционных заболеваний крови. MYCIN в настоящее время используется для обучения врачей.
ЭС DENDRAL разработана в Стэнфордском университете в середине 60-х годов для определения топологических структур органических молекул. Система выводит молекулярную структуру химических веществ по данным масс-спектрометрии и ядерного магнитного резонанса.
ЭС PROSPECTOR разработана в Стэнфордском университете в 1974--1983 годах для оценки геологами потенциальной рудоносности района. Система содержит более 1000 правил и реализована на INTERLISP. Программа сравнивает наблюдения геологов с моделями разного рода залежей руд. Программа вовлекает геолога в диалог для извлечения дополнительной информации. В 1984 году она точно предсказала существование молибденового месторождения, оцененного в многомиллионную сумму.
Рассмотрим экспертную систему диагностирования (ЭСД) цифровых и цифроаналоговых устройств [ 6.7 ] , [ 6.8 ] , [ 6.9 ] , в которой использовались системы продукций и фреймы, а также прямая и обратная цепочка рассуждений одновременно. В качестве объекта диагностирования (ОД) в ЭСД могут использоваться цифровые устройства (ЦУ), БИС, цифро-аналоговые устройства. На рис. 6.2 показано, что такая ЭСД работает совместно с автоматизированной системой контроля и диагностирования (АКД), которая подает в динамике воздействия на ОД (десятки, сотни и тысячи воздействий в секунду), анализирует выходные реакции и дает заключение: годен или не годен. В случае, если реакция проверяемого ОД не соответствует эталонным значениям, то подключается основанная на знаниях подсистема диагностирования. ЭСД запрашивает значения сигналов в определенных контрольных точках и ведет оператора по схеме ОД, рекомендуя ему произвести измерения в определенных контрольных точках или подтвердить промежуточный диагноз, и в результате приводит его к месту неисправности. Исходными данными для работы ЭСД являются результаты машинного моделирования ОД на этапе проектирования. Эти результаты моделирования передаются в ЭСД на магнитных носителях в виде тысяч продукционных правил. Движение по контрольным точкам осуществляется на основе модели, записанной в виде сети фреймов для ОД.
Такая ЭСД не была бы интеллектуальной системой, если бы она не накапливала опыт. Она запоминает найденную неисправность для данного типа ОД. В следующий раз при диагностике неисправности ОД этого типа она предлагает проверить сразу же эту неисправность, если реакция ОД говорит о том, что такая неисправность возможна. Так поступают опытные мастера радиоэлектронной аппаратуры (РЭА), знающие "слабые" места в конкретных типах РЭА и проверяющие их в первую очередь. ЭСД накапливает вероятностные знания о конкретных неисправностях с целью их использования при логическом выводе. При движении по дереву поиска решений на очередном шаге используется критерий - максимум отношения вероятности (коэффициента уверенности) постановки диагноза к трудоемкости распознавания неисправности. Коэффициенты уверенности автоматически корректируются во время работы ЭСД при каждом подтверждении или не подтверждении диагноза для конкретных ситуаций диагностирования. Трудоемкости элементарных проверок первоначально задаются экспертом, а затем автоматически корректируются в процессе работы ЭСД.
ЭСД не была реализована в виде ИРС по экономическим соображениям. Небольшая серийность проверяемой аппаратуры, недостаточная унификация и дешевая рабочая сила (последний фактор и в наше время играет в России немаловажную роль) помешали реализовать полностью автоматическое диагностирование.
Среди современных коммерческих систем хочется выделить экспертную систему - оболочку G2 американской фирмы Gensym (USA) [ 6.4 ] как непревзойденную экспертную коммерческую систему для работы с динамическими объектами. Работа в реальном времени с малыми временами ответа часто необходима при анализе ситуаций в корпоративных информационных сетях, на атомных реакторах, в космических полетах и множестве других задач. В этих задачах необходимо принимать решения в течение миллисекунд с момента возникновения критической ситуации. ЭС G2, предназначенная для решения таких задач, отличается от большинства динамических ЭС такими характерными свойствами, как:
- работа в реальном времени с распараллеливанием процессов рассуждений;
- структурированный естественно-языковый интерфейс с управлением по меню и автоматической проверкой синтаксиса;
- обратный и прямой вывод, использование метазнаний, сканирование и фокусирование;
- интеграция подсистемы моделирования с динамическими моделями для различных классов объектов;
- структурирование БЗ, наследование свойств, понимание связей между объектами;
- библиотеки знаний являются ASCII-файлами и легко переносятся на любые платформы и типы ЭВМ;
- развитый редактор для сопровождения БЗ без программирования, средства трассировки и отладки БЗ;
- управление доступом с помощью механизмов авторизации пользователя и обеспечения желаемого взгляда на приложение;
- гибкий интерфейс оператора, включающий графики, диаграммы, кнопки, пиктограммы и т.п.;
- интеграция с другими приложениями (по TCP/IP) и базами данных, возможность удаленной и многопользовательской работы.
В качестве примера быстродействующей системы для отслеживания состояния корпоративной информационной сети (КИС) можно привести основанную на знаниях систему мониторинга OMEGAMON фирмы Candle (IBM с 2004 г.) . OMEGAMON - типичный представитель современных экспертных мультиагентных динамических систем, работающих в реальном времени. OMEGAMON позволяет за считанные минуты ввести и отладить правила мониторинга внештатных ситуаций для объектов КИС. Правило (situation) записывается как продукция. Логический вывод в такой ЭС реализован при помощи механизма policy, обеспечивающего построение цепочек логического вывода на основе situations. На рис. 6.3 приведен один из интерфейсов для заполнения БЗ в ЭС OMEGAMONM. На этом рисунке показана ситуация, определяющая критическое количество сообщений в очередях транспортной системы IBM WebSphere MQ ( MQSeries ).
На рис. 6.4 показаны основные компоненты системы OMEGAMON:
- сервер сбора информации от агентов CandleManagementServer (CMS);
- сервер отображения результатов, оповещения пользователей и настройки мониторинга КИС CandleNetPortal Server (CNP) со своими клиентами;
- Candle Management Workstation (CMW) - рабочая станция администратора OMEGAMON ;
- Managed Systems - компьютеры КИС, на которых работают агенты.
Агенты OMEGAMON работают на контролируемых системах (Managed Systems), как первоклассные шпионы: они незаметны с точки зрения использования CPU и оперативны при мониторинге с точки зрения времени поставки своих донесений в центр (CMS). Они фиксируют критическую ситуацию и обеспечивают реакцию (ACTION) менее чем за 1 секунду. Все определяется тем интервалом мониторинга, который задается экспертом на основе своих интуитивных знаний. В качестве ACTION при определении ситуаций можно использовать различные типы действий: посылку почтовых сообщений и sms специалистам сопровождения, посылку информации в другие системы, выполнение системных команд и т.д. Количество объектов мониторинга (компьютеров КИС) может достигать нескольких сотен, и на каждом объекте может быть несколько сотен контролируемых параметров. Количество платформ (типов операционных систем), на которых работают агенты, превышает 30, начиная от OS/390,,OS/400, далее различные UNIX-платформы (HP_UX, AIX, Solaris) и заканчивая Windows. На одном сервере может работать несколько агентов, например, для мониторинга WebSphere MQ ( MQSeries ), WebSphere Application Server, DB-2 и HP_UNIX одновременно.
Серверы CMS и CNP-servers могут работать на одном выделенном сервере, как правило, на базе операционной системы Windows. Настройка ситуаций (situations) и механизмов логического вывода (policy) производится на рабочем компьютере администратора через CNP-client. Для только что созданной ситуации вы нажимаете кнопку Apply и моментально видите отображение ACTION через CNP-client, через почту и т.д.
Следует подчеркнуть, что основанная на знаниях система мониторинга OMEGAMON - это весьма эффективная система управления вычислительными ресурсами, надежный и незаменимый помощник в поисках решений по оперативному устранению критических и трудных для диагностирования ситуаций, при анализе информационных потоков, анализе производительности и настройке КИС.
В следующей лекции будет рассмотрена практическая реализация экспертной системы управления технологическим процессом в составе ИРС.