|
| - |
|
В лекции даются основные понятия теории дифференциальных уравнений. Вводятся уравнения первого порядка, уравнения в полных дифференциалах и уравнения с разделяющимися переменными.
| - |
24 минуты |
| - |
|
Лекция посвящена уравнениям в полных дифференциалах. В ней даются условие интегрируемости Клеро-Эйлера, метод лагранжа вариации постоянных. Рассказывается о решениях в квадратурах, задаче Коши и методе введения параметра.
| - |
24 минуты |
| - |
|
В лекции рассказывается об использование инвариантности уравнения относительно группы преобразований для понижения порядка уравнения. Изучаются некоторые конкретные типы уравнений, допускающих понижение порядка.
| - |
24 минуты |
| - |
|
В лекции рассказывается о линейных дифферециальных уравнения с постоянными коэффициентами, квазимногочленах и их свойствах, даются определение характеристического многочлена и постановка задачи Коши.
| - |
|
Лекция посвящена решениям однородных и неоднородных уравнения, в правой части которых квазимногочлен. Рассказывается о вещественной форме записи вещественного решения уравнения с вещественными коэффициентами.
| - |
|
Первая краевая задача для линейного уравнения второго порядка. Простейшие задачи с сингулярно входящим малым параметром.
| - |
24 минуты |
| - |
|
Общие сведения о системах уравнений. Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, общий метод решения.
| - |
|
Однородные системы. Неоднородные системы, в правой части которых квазимногочлен. Вещественная форма записи вещественного решения системы с вещественными коэффициентами.
| - |
|
Экспонента от матрицы и ее вычисление. Матричная формула решения нормальной системы линейных дифференциальных уравнений с постоянными коэффициентами.
| - |
24 минуты |
| - |
|
Свойства преобразования Лапласа, теоремы о представлении оригинала в виде интеграла от изображения, об однозначном восстановлении оригинала и об отображении множеств квазимногочленов и правильных рациональных дробей.
| - |
|
Применение преобразования Лапласа к решению линейных дифференциальных уравнений с постоянными коэффициентами и систем таких уравнений. Операционный метод решения для систем.
| - |
24 минуты |
| - |
|
В лекции рассматривается простейшая задача вариационного исчисления, даются основные результаты. Рассматривается уравнение Эйлера и его применение для определения экстремального функционала.
| - |
|
Некоторые свойства простейшей задачи вариационного исчисления. Примеры - задачи о брахистохроне и о поверхности вращения, имеющей минимальную площадь.
| - |
|
Функционалы, зависящие от нескольких функций. Функционалы, зависящие от от старших производных. Задача со свободным концом.
| - |
|
В лекции рассматриваются изопериметрическая задача и задача Лагранжа.
| - |
24 минуты |
| - |
|
Вспомогательные сведения. Приближенные решения задачи Коши для нормальных систем дифференциальных уравнений. Теорема о сравнении двух приближенных решений задачи Коши.
| - |
|
Теорема существования и единственности решения задачи Коши для нормальных систем дифференциальных уравнений. Теорема о продолжении решения.
| - |
|
Зависимость решения задачи Коши от параметров, входящих в уравнение, и от начальных данных (непрерывность, дифференцируемость, уравнение в вариациях).
| - |
|
Уравнение первого порядка, не разрешенное относительно производной, постановка задачи Коши. Теорема существования и единственности решения задачи Коши. Особые решения.
| - |
24 минуты |
| - |
|
Основные свойства автономных систем. Положение равновесия. Классификация положений равновесия линейной автономной системы второго порядка.
| - |
|
Положение равновесия нелинейной автономной системы, устойчивость и асимптотическая устойчивость, теорема Ляпунова.
| - |
24 минуты |
| - |
|
Связь теории первых интегралов с теорией линейных однородных уравнений с частными производными первого порядка. Независимые первые интегралы. Теорема о максимальном числе независимых первых интегралов.
| - |
|
Связь теории первых интегралов с теорией линейных однородных уравнений с частными производными первого порядка. Независимые первые интегралы. Теорема о максимальном числе независимых первых интегралов.
| - |
24 минуты |
| - |
|
Уточнение теоремы существования и единственности решения задачи Коши. Однородные нормальные системы. Фундаментальные системы решений. Теорема Лиувилля-Остроградского.
| - |
|
Неоднородные нормальные системы. Метод вариации постоянных. Следствия для одного уравнения (однородного и неоднородного) n-го порядка.
| - |
24 минуты |
| - |
|
Осцилляционные свойства решений однородного уравнения второго порядка, теорема Штурма и ее следствия.
| - |
36 минут |
| - |
|
Доказательство теоремы о возможности приведения матрицы линейного преобразования к жордановой форме; теорема была использована в конструкциях, рассмотренных в лекции 9.
| - |
5 часов |
| - |