Помогите решить задание лекции 3 курс Математическая теория формальных языков |
Алгоритмически неразрешимые проблемы
16.2. Проблема однозначности
Теорема 16.2.1. Пусть . Тогда не существует алгоритма, позволяющего по произвольной контекстно-свободной грамматике G над алфавитом узнать, является ли грамматика G однозначной.
Доказательство. Рассмотрим язык . Следуя доказательству теоремы 9.4.3, построим грамматику G для этого языка, исходя из грамматик и .
Грамматика G является неоднозначной тогда и только тогда, когда постовская система соответствия имеет решение.
Упражнение 16.2.2. Однозначна ли контекстно-свободная грамматика
16.3. Дополнение контекстно-свободного языка
Лемма 16.3.1. Рассмотрим алфавит . Язык является контекстно-свободным при любом .
Пример 16.3.2. Пусть . Тогда язык над алфавитом порождается контекстно-свободной грамматикой
Заметим, что для каждого i.Язык является даже линейным (чтобы получить линейную грамматику, достаточно "раскрыть" вспомогательные символы A, B и Z ).
Замечание 16.3.3. Лемму 16.3.1 можно доказать, явно построив контекстно-свободную грамматику (как в примере 16.3.2), а можно и вывести из теоремы 12.2.7}, проверив, что - детерминированный контекстно-свободный язык.
Определение 16.3.4. Пусть , , , где и для всех i. Обозначим через язык .
Лемма 16.3.5. Язык является контекстно-свободным при любых и .
Доказательство. .
Лемма 16.3.6. Дополнение языка является непустым тогда и только тогда, когда постовская система соответствия имеет решение.
Доказательство Утверждение следует из леммы 16.1.2.
Теорема 16.3.7. Пусть . Тогда не существует алгоритма, позволяющего по произвольной контекстно-свободной грамматике G над алфавитом узнать, верно ли, что .
Доказательство Очевидно, что тогда и только тогда, когда дополнение языка L(G) является пустым.
Теорема 16.3.8. Пусть . Тогда не существует алгоритма, позволяющего по произвольным контекстно-свободным грамматикам G1 и G2 над алфавитом узнать, верно ли, что L(G1) = L(G2).
Доказательство Утверждение следует из предыдущей теоремы и примера 1.5.16.
Теорема 16.3.9. Пусть . Тогда не существует алгоритма, позволяющего по произвольным контекстно-свободным грамматикам G1 и G2 над алфавитом узнать, верно ли, что .
Доказательство Очевидно, что тогда и только тогда, когда .
Лемма 16.3.10. Дополнение языка является бесконечным тогда и только тогда, когда постовская система соответствия имеет решение.
Теорема 16.3.11. Пусть . Тогда не существует алгоритма, позволяющего по произвольной контекстно-свободной грамматике G над алфавитом узнать, является ли бесконечным множество .
Упражнение 16.3.12. Рассмотрим язык, порождаемый грамматикой
Содержит ли этот язык все слова из {a,b}*?Упражнение 16.3.13. Рассмотрим язык, порождаемый грамматикой
{a,b}*?