Опубликован: 11.04.2007 | Уровень: специалист | Доступ: свободно
Лекция 2:

Предмет и основные разделы кибернетики

< Лекция 1 || Лекция 2: 12 || Лекция 3 >
Аннотация: Теория информации – дочерняя наука кибернетики. В связи с этим рассматриваются кибернетические системы, управление – основная категория кибернетики. Характеристики непрерывной и дискретной информации являются важными составляющими дальнейшего изучения теории информации. Обозначаются принципы хранения, измерения, обработки и передачи информации. Схема передачи информации позволяет понять принципы и важность кодирования. Описывается сущность работы ЦВМ и АВМ и их применение на практике

Теория информации рассматривается как существенная часть кибернетики.

Кибернетика - это наука об общих законах получения, хранения, передачи и переработки информации. Ее основной предмет исследования - это так называемые кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем: автоматические регуляторы в технике, ЭВМ, мозг человека или животных, биологическая популяция, социум. Часто кибернетику связывают с методами искусственного интеллекта, т.к. она разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основными разделами (они фактически абсолютно самостоятельны и независимы) современной кибернетики считаются: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления и теория распознавания образов.

Родоначальниками кибернетики (датой ее рождения считается 1948 год, год соответствующей публикации) считаются американские ученые Норберт Винер (Wiener, он - прежде всего) и Клод Шеннон (Shannon, он же основоположник теории информации).

Винер ввел основную категорию кибернетики - управление (основная категория кибернетики), показал существенные отличия этой категории от других, например, энергии, описал несколько задач, типичных для кибернетики, и привлек всеобщее внимание к особой роли вычислительных машин, считая их индикатором наступления новой НТР. Выделение категории управления позволило Винеру воспользоваться понятием информации, положив в основу кибернетики изучение законов передачи и преобразования информации.

Сущность принципа управления заключается в том, что движение и действие больших масс или передача и преобразование больших количеств энергии направляется и контролируется при помощи небольших количеств энергии, несущих информацию. Этот принцип управления лежит в основе организации и действия любых управляемых систем: автоматических устройств, живых организмов и т.п. Подобно тому, как введение понятия энергии позволило рассматривать все явления природы с единой точки зрения и отбросило целый ряд ложных теорий, так и введение понятия информации позволяет подойти с единой точки зрения к изучению самых различных процессов взаимодействия в природе.

В СССР значительный вклад в развитие кибернетики внесли академики Берг А.И. и Глушков В.М.

В нашей стране в 50-е годы кибернетика была объявлена лженаукой и была практически запрещена, что не мешало, однако, развиваться всем ее важным разделам (в том числе и теории информации) вне связи с обобщающим словом "кибернетика". Это было связано с тем, что сама по себе кибернетика представляет собой род философии, в кое-чем конфликтной с тогдашней официальной доктриной (марксистско-ленинской диалектикой).

Теория информации тесно связана с такими разделами математики как теория вероятностей и математическая статистика, а также прикладная алгебра, которые предоставляют для нее математический фундамент. С другой стороны теория информации исторически и практически представляет собой математический фундамент теории связи. Часто теорию информации вообще рассматривают как одну из ветвей теории вероятностей или как часть теории связи. Таким образом, предмет "Теория информации" весьма узок, т.к. зажат между "чистой" математикой и прикладными (техническими) аспектами теории связи.

Теория информации представляет собой математическую теорию, посвященную измерению информации, ее потока, "размеров" канала связи и т.п., особенно применительно к радио, телеграфии, телевидению и к другим средствам связи. Первоначально теория была посвящена каналу связи, определяемому длиной волны и частотой, реализация которого была связана с колебаниями воздуха или электромагнитным излучением. Обычно соответствующий процесс был непрерывным, но мог быть и дискретным, когда информация кодировалась, а затем декодировалась. Кроме того, теория информации изучает методы построения кодов, обладающих полезными свойствами.

Формальное представление знаний

При формальном представлении знаний каждому описываемому объекту или понятию ставится в соответствие некоторый числовой код. Связи между кодируемыми сущностями также представляются кодами (адресами и указателями). Для такого перевода неформальных данных в формальный, цифровой вид должны использоваться специальные таблицы, сопоставляющие кодируемым сущностям их коды и называемые таблицами кодировки. Простейший пример такой таблицы - это ASCII (American Standard Code for Information Interchange), используемая повсеместно с вычислительной техникой. Она сопоставляет печатным и управляющим символам (управляющими являются, например, символы, отмечающие конец строки или страницы) числа от 0 до 127. Следующая программа на языке Паскаль выведет на экран все печатные символы этой таблицы и их коды:

\setbox\bzero=\vbox{\hsize=120pt{\prg
var i: byte;
begin
\  for i := 32 to 126 do
\    write(i:6, chr(i):2);
\  writeln
end\rm.}}
\centerline{\box\bzero}

На практике обычно используют не сам исходный ASCII, а так называемый расширенный ASCII (ASCII+), описывающий коды 256 символов (от 0 до 255). Первые 128 позиций расширенного ASCII совпадают со стандартом, а дополнительные 128 позиций определяются производителем оборудования или системного программного обеспечения. Кроме того, некоторым управляющим символам ASCII иногда назначают другое значение.

Хотя таблицы кодировки используются для формализации информации, сами они имеют неформальную природу, являясь мостом между реальными и формальными данными. Например, коду 65 в ASCII соответствует заглавная латинская буква A, но не конкретная, а любая. Этому коду будет соответствовать буква A, набранная жирным прямым шрифтом, и буква \sl A, набранная нежирным с наклоном вправо на 9.5^\circ шрифтом, и даже буква \frak
A готического шрифта. Задача сопоставления реальной букве ее кода в выбранной таблице кодировки очень сложна и частично решается программами распознания символов (например, Fine Reader).

Упражнение 1 Каков код букв W и w в ASCII?

< Лекция 1 || Лекция 2: 12 || Лекция 3 >