Здравствуйте! 4 июня я записалась на курс Прикладная статистика. Заплатила за получение сертификата. Изучала лекции, прошла Тест 1. Сегодня вижу, что я вне курса! Почему так произошло? |
Различные виды статистических данных
1.1. Количественные и категоризованные данные
Методы прикладной статистики - это методы анализа данных, причем обычно достаточно большого их количества. Статистические данные могут иметь различную природу. Исторически самыми ранними были два вида данных - сведения о числе объектов, удовлетворяющих тем или иным условиям, и числовые результаты измерений.
Первый из этих видов до сих пор главенствует в сборниках государственных статистических органов. Такого рода данные часто называют категоризованными, поскольку о каждом из рассматриваемых объектов известно, в какую из нескольких заранее заданных категорий он попадает. Примером является информация Росстата о населении страны, с разделением по возрастным категориям и полу. Часто при составлении таблиц жертвуют информацией, заменяя точное значение измеряемой величины на указание интервала группировки, в которую это значение попадает. Например, вместо точного возраста человека используют лишь один из указанных в таблице возрастных интервалов.
Второй наиболее распространенный вид - количественные данные, рассматриваемые как действительные числа. Таковы результаты измерений, наблюдений, испытаний, опытов, анализов. Количественные данные обычно описываются набором чисел (выборкой), а не таблицей.
Нельзя утверждать, что категоризованные данные соответствуют первому этапу исследования, а числовые - следующему, на котором используются более совершенные методы измерения. Дело в том, что человеку свойственно давать качественные ответы на возникающие в его практической деятельности вопросы. Примером является используемая А.А. Пивнем таблица сильных и слабых сторон внутренней среды конкретной компании (табл.1.1).
Ясно, что вполне можно превратить в числа значения признаков, названия которых приведены в столбце "Показатели компании", однако этот переход будет зависеть от исследователя, носить неизбежный налет субъективизма.
Иногда не удается однозначно отнести данные к категоризованным или количественным. Например, в Ветхом Завете, в Четвертой книге Моисея "Числа" указывается количество воинов в различных коленах. С одной стороны, это типичные категоризованные данные, градациями служат названия колен. С другой стороны, эти данные можно рассматривать как количественные, как выборку, их вполне естественно складывать, вычислять среднее арифметическое и т.п.
Описанная ситуация типична. Существует весьма много различных видов статистических данных. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента, то получаем так называемые цензурированные данные, состоящие из набора чисел - продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Такого рода данные часто используются при оценке и контроле надежности технических устройств.
Описание вида данных и, при необходимости, механизма их порождения - начало любого статистического исследования.
В простейшем случае статистические данные - это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке. Используют и более сложные признаки, перечень которых будет расширяться по мере развертывания изложения в учебнике.
При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Если часть координат - числа, а часть - качественные (категоризованные) данные, то говорим о векторе разнотипных данных.
Одним элементом выборки, т.е. одним измерением, может быть и функция в целом. Например, электрокардиограмма больного или амплитуда биений вала двигателя, или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.
Элементами выборки могут быть и бинарные отношения. Например, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы - образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т.д.
Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных - числовые и нечисловые. Соответственно прикладная статистика разбивается на две части - числовую и нечисловую.
Числовые статистические данные - это числа, векторы, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки – это (классические) законы больших чисел и центральные предельные теоремы (см. "Теоретическая база прикладной статистики" ).
Нечисловые статистические данные - это категоризованные данные, векторы разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т.д. (см. "Статистика нечисловых данных" ).
Сведем информацию об основных областях прикладной статистики в табл.1.2. Отметим, что модели порождения цензурированных данных входят в состав каждой из рассматриваемых областей.
№ п/п | Вид статистических данных | Область прикладной статистики |
---|---|---|
1 | Числа | Статистика (случайных) величин |
2 | Конечномерные векторы | Многомерный статистический анализ |
3 | Функции | Статистика случайных процессов и временных рядов |
4 | Объекты нечисловой природы | Статистика нечисловых данных (статистика объектов нечисловой природы) |