Здравствуйте,ясдавала 15 тестов и экзамен. Мне нужно сейчас посмотреть результаты тестов.Как это сдлеать? |
Системы счисления и действия в них
Обратным кодом числа в системе с основанием р называется число в этой системе, получаемое заменой цифры, символа в каждом разряде числа на его дополнение до максимальной цифры в системе (то есть до р – 1 ).
Дополнительный код = обратный код + единица в младшем разряде.
Пример.
-
10011 двоичное число,
01100 обратный код этого двоичного числа,
01101 дополнительный код этого двоичного числа;
-
457 восьмеричное число,
321 дополнительный код ;
-
А9 шестнадцатеричное число,
57 дополнительный код.
Вычитание с помощью дополнительного кода: найти дополнительный код вычитаемого такой же разрядности, как и уменьшаемое, и сложить этот код с уменьшаемым. Результатом вычитания будет полученная сумма без учета старшего разряда (отбрасывается).
Пример. Выполним вычитание напрямую и через сложение (через дополнительный код ):
Целые числа в математике и их аналоги в n-разрядных арифметиках тождественны (по количеству) в рамках их представления с этой разрядностью. При этом можно отметить основные отличия представления чисел в поле памяти человека и в поле памяти n-разрядной арифметики:
- бесконечное и счетное множество целых чисел представляется отрезком [–N; +N], где N – максимальное число, представимое в этой арифметике (многоточие – общее число единиц, равное n ): N = (111 . . . 1)2 ;
- бесконечное и несчетное множество действительных чисел , располагающееся на числовой оси равномерно и плотно, представляется в n-разрядной арифметике множеством с неравномерной плотностью (сгущение у нуля и сжатость со стороны меньших чисел);
- нуль во множестве действительных чисел в любой своей окрестности имеет множество чисел, а нуль в n-разрядной арифметике представлен изолированно.
С точки зрения обычной арифметики, например, в интервале (–1; 1) имеется бесконечное множество "плотно" расположенных точек, причем в любой окрестности каждой такой точки имеется хотя бы одна точка из этого множества. Такую арифметику называют часто регулярной арифметикой. Машинная же арифметика имеет следующие особенности. Она нерегулярна – точки интервала сгущаются около нуля; кроме того, в этом интервале точка х "изолирована" – если взять любую ее окрестность (х – а; х + а), где а – число, которое не превосходит машинного нуля (наименьшего представимого в машине числа), то в этом интервале нет других точек (отличных от х ). Говоря языком теории вероятности, плотности распределения чисел в регулярной и нерегулярной арифметике – различны, как, впрочем, плотности распределения целых и вещественных чисел в одной и той же арифметике. Множество вещественных чисел в машинной арифметике представляется как подмножество (определяемое разрядностью арифметики) множества рациональных чисел. Есть и другие особенности этих множеств (связанные, например, с выполнением операций), но указанные выше особенности – основные.
Различия в представлении чисел в обычной и в машинной (n-разрядной) арифметике ограничивают как "математические" возможности компьютера, так и "компьютерные" возможности математики, использование математических методов, алгоритмов в компьютерах.
Нужно всегда иметь в виду, что точность в теоретической математике – понятие абстрактное, и в практической математике может возникать иллюзия точности там, где ее на самом деле нет, – если нет корректной договоренности о пределах возможных значений неизбежных погрешностей в рамках рассматриваемых вычислительных ресурсов, например, трудоемкости и времени, а также не оговорена стратегия управления этой погрешностью.
Так как диапазон n-разрядных чисел системы счисления с основанием p находится в пределах , то для представления дробных чисел этот диапазон еще снижается, поскольку часть разрядов необходимо отвести под изображение мантиссы. Таким образом, имеются так называемые "зоны нечувствительности" форм представления чисел в n-разрядных арифметиках.
В 1937 году Конрадом Цузе для увеличения диапазона чисел, представимых в арифметике двоичных чисел, а также для повышения точности этого представления чисел было предложено представление чисел в плавающей, нормализованной форме – число x представляется в виде: , где m – мантисса числа, k – целый порядок числа, .
Пусть даны два числа: и ( ). Тогда можно проверить, что результаты выполнения операций будут равны:
Если из n разрядов, отводимых под изображение чисел, m двоичных разрядов отвести под мантиссу, k – под порядок, один разряд – под знак числа и один разряд – под знак порядка (например, 0 – плюс, 1 – минус), то диапазон представимых в форме с плавающей запятой чисел резко увеличивается ( m + k + 2 = n ):
(многоточие соответствует k единицам).
Числа, меньшие нижней границы положительных чисел и большие верхней границы отрицательных чисел, считаются равными нулю, не различаются между собой. Числа, большие верхней границы положительных чисел, полагаются равными положительной бесконечности (меньшие нижней границы отрицательных – отрицательной бесконечности). Сравнение двух разных по величине чисел в арифметике с ограниченной разрядностью может поэтому приводить к неверному результату, как и сравнение двух равных в таких системах чисел с точки зрения математической.
Такое представление очень удобно для хранения в ЭВМ, так как на самом деле необходимо хранить не само число, а его знак, мантиссу, порядок и знак порядка, и все операции с числами сводятся к операциям с этими объектами. Операции же с этими объектами просты: сравнение знаков, увеличение, уменьшение порядка, сложение мантисс, нормализация, то есть в конечном итоге сводятся к достаточно просто реализуемым операциям сдвига, выравнивания, сравнения разрядов.
Пример. Вычислить наибольшее и наименьшее 5-разрядное целое число в системе счисления с основанием 3. Наибольшее целое n-разрядное число, которое возможно записать в системе счисления с основанием р, равно:
Наименьшее целое n-разрядное число в этой системе равно
.
Таким образом, в системе счисления с основанием 3 и числом разрядов 5 представим диапазон следующих чисел:
Формулам можно придать более компактный вид. Например, для двоичной системы
а в восьмеричной системе счисления эти числа
К "неудобствам" этой формы представления чисел можно отнести возможность возникновения следующих "особо опасных" ситуаций:
- если число достаточно мало, например, а = 0.12Е + 00, то оно может быть представлено любым числом из наименьшего интервала включающего а, в частности числом 0.120000001 или 0.199999999 и в этом случае сравнивать на равенство "в лоб" нельзя (вещественные числа в форме с плавающей запятой опасно сравнивать на совпадение);
- порядок выполнения операций может влиять на результат, например, в 4-разрядной арифметике с фиксированной запятой 20.0000 + 0.0001 = 20.0001, но при этом 0.2000Е + 02 + 0.1000Е – 05 = 0.2000Е + 02 ;
- может возникнуть так называемая ситуация "переполнения порядка" при сложении (умножении) очень больших чисел или "исчезновения порядка" при сложении (умножении) "очень малых чисел", в частности, 0.6000Е + 39 x0.1200Е + 64 = 0.9999Е + 99 (или же не определено), а также 0.6000Е – 35 x 0.0200Е – 65 = 0.9999Е – 99 (или же не определено), при соответствующим образом определенной разрядности десятичной арифметики;
- при сложении чисел с плавающей запятой (а, в конечном счете, все операции выполняются через сложение) происходит выравнивание порядков для последующего сложения мантисс, а при выравнивании степеней может происходить потеря (усечение) младших разрядов, например, такая ситуация может возникнуть при сложении одного "очень большого числа" с одним "очень малым числом"
Есть много различных способов (часто искусственных) формирования систем чисел.
Пример. В факториальной системе счисления целые числа записывают линейной комбинацией факториалов, например, . Эта система (условно) позиционна. Так как 0! = 1! = 1, то два младших разряда n-разрядного числа в разложении этого числа по факториалам представимы как ! и поэтому веса этих разрядов не зависят от позиции (поэтому при это число можно считать непозиционным лишь условно). Формула перевода из факториальной системы счисления в десятичную систему:
История развития систем счисления достаточно интересна. Приведем лишь некоторые факты. Счет вначале велся с помощью пальцев рук (пятерками и затем – десятками). В некоторых странах сохранился счет с основанием 12 (например, Великобритания – 12 шиллингов) и 20 (например, Франция – "quatre–vingts" или "четыре-двадцать" то есть 80; у древних адыгов счет велся аналогично: "тощIищ", то есть "двадцать-три" – 60) и др.