Опубликован: 26.04.2005 | Уровень: для всех | Доступ: свободно | ВУЗ: Национальный исследовательский ядерный университет «МИФИ»
Лекция 18:

Структура модема, методы модуляции, стандарты и программные средства для модемов

< Лекция 17 || Лекция 18: 1234
Аннотация: В данной лекции рассматриваются типовая структурная схема модема для аналоговых телефонных линий, методы модуляции, используемые в высокоскоростных модемах, особенности стандартов V34, V.90 и V.92, классификация модемов и программные средства для них.
Ключевые слова: кодер, циклический код, помехоустойчивый код, бит, CRC, MNP, networking protocol, международный стандарт, v.42bis, теорема Шеннона, избыточность, цепочка символов, bag, BAR, bin, скремблер, длина цепочки, самосинхронизирующиеся коды, эквалайзер, запаздывания, модем, определение, метод модуляции, АЦП, ЦАП, интерпретация, модуляция, DPSK, расстояние, информация, улучшение, евклидово пространство, QAM, quadrature amplitude modulation, интервал, TCM, анализ, плоскость, скорость передачи, bps, BIT, PER, second, CPS, отношение, Произведение, полоса пропускания, множитель, длина, предел, дискретизация, телефонная сеть, очередь, коммутация каналов, upgrader, цифровой модем, кодирование информации, связь, connect, производительность, список, PLC, y-cable, fax, voice mail, voice, robotically, xdsl, множества, modem, программные средства, телекоммуникационная программа, microcomputer, командный режим, Norton Commander, terminal emulation, низкоуровневая команда, tuning, параллельный порт, kermit, xmodem, ymodem, zmodem, формат пакета, flow control, RTS, CTS, XON, XOFF, удаленный терминал, TTY

Структура модема

Одна из возможных структурных схем модема показана на рис. 18.1. Она содержит типовые функциональные узлы обработки и преобразования сигналов, из числа которых намеренно исключены некоторые второстепенные узлы, предназначенные для организации синхронизации и обработки служебных сигналов. Далее узлы, осуществляющие прямое и обратное преобразования в передающей и приемной части модема, рассматриваются попарно.

Структурная схема модема

Рис. 18.1. Структурная схема модема

Кодер/декодер предназначены для защиты от ошибок и "сжатия" данных. Защита от ошибок предполагает включение в пакеты передаваемых данных избыточного циклического кода (CRC), как и в локальных компьютерных сетях (см. раздел "Использование помехоустойчивых кодов для обнаружения ошибок в сети" Лекции 10). При этом в качестве стандартных протоколов, более подробно описывающих форматы данных (в том числе число бит в коде CRC – 16 или 32), используются протоколы серии MNP (Microcom Networking Protocol компании Microcom) или V.42 / V.44 (международный стандарт ITU-T). Протокол V.42bis представляет собой протокол сжатия данных. Если нельзя увеличить пропускную способность линии передачи из-за ограничения, накладываемого теоремой Шеннона, то можно уменьшить избыточность передаваемой текстовой информации, используя свойство повторяемости цепочек символов в словах. Для этого на передающем и приемном конце линии модемы (точнее, их кодеры и декодеры) организуют и поддерживают идентичные динамические словари в виде структур типа дерева с отдельными символами в качестве узлов (см. рис. 18.2). Достаточно передавать не сами слова, а, фактически, специальным образом описанные (в виде чисел) части словарей (пути в дереве), содержащие требуемые последовательности символов. Так, часть словаря на рис. 18.2 позволяет описать строки символов A, B, BA, BAG, BAR, BI, BIN, C, D, DE, DO и DOG относительно соответствующих корневых узлов.

Пример представления части словаря при работе протокола сжатия V.42bis

Рис. 18.2. Пример представления части словаря при работе протокола сжатия V.42bis

Скремблер/дескремблер производят такое преобразование передаваемого и принятого сигналов, которое исключает влияние длинных цепочек из логических нулей или единиц, а также коротких повторяющихся последовательностей на надежность синхронизации в приемной части модема. Скремблер при необходимости "разреживает" такие последовательности за счет принудительно вставляемых логических нулей или единиц, делая преобразованные данные псевдослучайными, а дескремблер удаляет лишние биты, восстанавливая исходный вид данных. Описанная проблема (зависимость качества синхронизации от вида передаваемых данных) существенна, конечно, не только при модемной связи, но и при любых видах обменов цифровыми данными по последовательной линии передачи, в которой не предусмотрена посылка отдельного синхросигнала. Такая ситуация характерна для компьютерных сетей, в которых для решения указанной проблемы вместо простых кодов передачи используются самосинхронизирующиеся коды (типа двухуровневых кодов Манчестер-2 или трехуровневых кодов с высокой плотностью единиц – КВП или BNZS в английском варианте названия).

Эквалайзер включается в приемной части модема и служит для компенсации зависимости группового времени запаздывания в линии от частоты. Для улучшения качества передачи речевых сигналов их спектральные составляющие на разных частотах должны приходить к удаленному модему с одинаковой задержкой. Идеальная компенсация показана на рис. 18.3. На практике в высокоскоростных модемах собственное групповое время запаздывания эквалайзера подстраивается автоматически.

Идеальная компенсация эквалайзером зависимости группового времени запаздывания в линии от частоты

Рис. 18.3. Идеальная компенсация эквалайзером зависимости группового времени запаздывания в линии от частоты

В приемной части модемов, работающих в дуплексном режиме на обычной двухпроводной телефонной линии, требуется осуществлять также эхо-компенсацию. Соответствующий функциональный узел на рис. 18.1 не показан. Проблема состоит в том, что при дуплексном обмене передающий модем может воспринять порожденный им же сигнал, отраженный от другого конца линии, как пришедший от удаленного модема. В стандартах для высокоскоростных модемов (в частности, в стандарте V.34) предусмотрена процедура эхо-компенсации и установлены ограничения на уровень отраженного сигнала (он должен быть меньше полезного сигнала не менее чем на 25...30 дБ) и его максимальную задержку (не более 200...300 мс). Практическая реализация эхо-компенсации в высокоскоростных модемах предусматривает автоматическое определение параметров отраженного сигнала (его амплитуды и задержки) на этапе установления соединения.

Фильтры и усилители на рис.18.1 являются традиционными устройствами при обработке сигналов на фоне шумов и помех и не нуждаются в более подробном описании. В то же время модулятор и демодулятор в модемах реализуют специфические и достаточно сложные методы модуляции, которые рассматриваются в разделе "Методы модуляции, используемые в высокоскоростных модемах".

В современных модемах большая часть функций выполняется программой, управляющей работой цифрового сигнального процессора (ЦСП). Для исключения эффекта наложения спектров принципиально использование непрерывных аналоговых фильтров. Нужны также аналоговые усилители, АЦП и ЦАП для преобразования аналоговых сигналов в цифровые и обратно.

< Лекция 17 || Лекция 18: 1234
Алексей Подсадников
Алексей Подсадников

Могу ли я получить сертификат о повышении квалификации если записывался на курс, не как на повышение квалификации.

Курс пройден.

И сколько действуют результаты курса?

Валерий Умаев
Валерий Умаев
Дмитрий Молокоедов
Дмитрий Молокоедов
Россия, Новосибирск, НГПУ, 2009