Добрый день! Я ранее заканчивал этот курс бесплатно. Мне пришло письмо что я могу по этому курсу получить удостоверение о повышении квалификации. Каким образом это можно сделать не совсем понятны шаги кроме как вновь записаться на этот курс. С уважением Жолондиевский Эрнесто Робертович. |
Эволюционное моделирование и генетические алгоритмы
Потребность в прогнозе и адекватной оценке последствий осуществляемых человеком мероприятий (особенно негативных) приводит к необходимости моделирования динамики изменения основных параметров системы, динамики взаимодействия открытой системы с его окружением (ресурсы, потенциал, условия, технологии и т.д.), с которым осуществляется обмен ресурсами в условиях враждебных, конкурентных, кооперативных или же безразличных взаимоотношений. Здесь необходимы системный подход, эффективные методы и критерии оценки адекватности моделей, которые направлены не только (не столько) на максимизацию критериев типа "прибыль", "рентабельность", но и на оптимизацию отношений с окружающей средой. Если критерии первого типа важны, например, для кратко- и среднесрочного прогнозирования и тактического администрирования, то второго типа - для средне- и долгосрочного прогноза, для стратегического администрирования. При этом необходимо выделить и изучить достаточно полную и информативную систему параметров исследуемой системы и его окружения, разработать методику введения мер информативности и близости состояний системы. Важно отметить, что при этом некоторые критерии и меры могут часто конфликтовать друг с другом.
Многие такие социально-экономические системы можно описывать с единых позиций, средствами и методами единой теории - эволюционной.
При эволюционном моделировании процесс моделирования сложной социально-экономической системы сводится к созданию модели его эволюции или к поиску допустимых состояний системы, к процедуре (алгоритму) отслеживания множества допустимых состояний (траекторий). При этом актуализируются такие атрибуты биологической эволюционной динамики (в скобках даны возможные социально-экономические интерпретации этих атрибутов для эволюционного моделирования ) как, например:
- сообщество (корпорация, корпоративные объекты, субъекты, окружение);
- видовое разнообразие и распределение в экологической нише (типы распределения ресурсов, структура связей в данной корпорации);
- экологическая ниша (сфера влияния и функционирования, эволюции на рынке, в бизнесе);
- рождаемость и смертность (производство и разрушение);
- изменчивость (экономической обстановки, ресурсов);
- конкурентные взаимоотношения (рыночные отношения);
- память (способность к циклам воспроизводства);
- естественный отбор (штрафные и поощрительные меры);
- наследственность (производственные циклы и их предыстория);
- регуляция (инвестиции);
- самоорганизация и стремление системы в процессе эволюции максимизировать контакт с окружением в целях самоорганизации, возврата на траекторию устойчивого развития и другие.
При исследовании эволюции системы необходима ее декомпозиция на подсистемы с целью обеспечения:
- эффективного взаимодействия с окружением;
- оптимального обмена определяющими материальными, энергетическими, информационными, организационными ресурсами с подсистемами;
- эволюционируемости системы в условиях динамической смены и переупорядочивания целей, структурной активности и сложности системы;
- управляемости системы, идентификации управляющей подсистемы и эффективных связей с подсистемами системы, обратной связи.
Пусть имеется некоторая система S с N подсистемами. Для каждой i-й подсистемы определим вектор x(i)=(x1(i),x2(i),:,xni(i)) основных параметров (т.е. параметров, без которых нельзя описать и изучить функционирование подсистемы в соответствии с целями и доступными ресурсами системы) и функцию s(i)=s(x(i)), которую назовем функцией активности или просто активностью этой подсистемы.
Пример. В бизнес-процессах это понятие близко к понятию деловой активности.
Для всей системы определены вектор состояния системы x и активность системы s(x), а также понятие общего потенциала системы.
Пример. Потенциал активности может быть определен аналогично биологическому потенциалу популяции, например, с помощью интеграла от активности на задаваемом временном промежутке моделирования.
Эти функции отражают интенсивность процессов как в подсистемах, так и в системе в целом.
Важными для задач моделирования являются три значения s(i)max, s(i)min, s(i)opt - максимальные, минимальные и оптимальные значения активности i-й подсистемы, а также аналогичные значения для всей системы ( smax, smin, sopt ). В качестве показателя экономического состояния можно брать также отношение значения этого показателя к его нормированному значению, а для комплексного учета влияния параметров на состояние системы можно использовать аналоги меры информационной близости, например, по К. Шеннону.
Если дана открытая экономическая система (процесс), а Н0, Н1 - энтропия системы в начальном и конечном состояниях процесса, то мера информации определяется как разность вида:
Уменьшение свидетельствует о приближении системы к состоянию статического равновесия (при доступных ресурсах), а увеличение - об удалении. Величина - количество информации, необходимой для перехода от одного уровня организации системы к другой (при - более высокой, при - более низкой организации).
Возможен подход и с использованием меры по Н. Моисееву. Пусть дана некоторая управляемая система, о состояниях которой известны лишь некоторые оценки - нижняя smin и верхняя smax. Известна целевая функция управления F(s(t),u(t)), где s(t) - состояние системы в момент времени t, а u(t) - управление из некоторого множества допустимых управлений, причем считаем, что достижимо uopt - некоторое оптимальное управление из пространства U, t0<t<T, smin<=s<=smax. Мера успешности принятия решения:
H=|(Fmax - Fmin)/(Fmax+Fmin)|,
Увеличение Н свидетельствует об успешности управления системой (успешности принятого управляющего решения).
Активности подсистем прямо или опосредованно взаимодействуют с помощью системной активности s(x), например, по простой схеме вида
Функции j(i), y(i) должны отражать эволюционируемость системы, в частности, удовлетворять условиям:
- периодичности, цикличности, например:
- затухания при снижении активности, например:
- равновесности и стационарности: выбор (определение) функции , осуществляется таким образом, чтобы система имела точки равновесного состояния, а s(i)opt, sopt достигались в стационарных точках x(i)opt, xopt для малых промежутков времени; в больших промежутках времени система может (в соответствии с теорией катастроф) вести себя хаотично, самопроизвольно порождая регулярные, упорядоченные, циклические взаимодействия (детерминированный хаос).
Взаимные активности подсистем i и j мы не учитываем. В качестве функции , могут быть эффективно использованы производственные функции типа Кобба-Дугласа:
В таких функциях важен параметр , отражающий степень саморегуляции, адаптации системы. Как правило, его нужно идентифицировать.
Функционирование системы удовлетворяет на каждом временном интервале ограничениям вида
При этом отметим, что выполнение для одного из двух условий
приводит к разрушению (катастрофе) системы.