1.
А.А.Веденов
Моделирование элементов мышления
М.: Наука, 1988
2.
Т. Кохонен
Ассоциативная память
М.: Мир, 1980
3.
Ф.Розенблатт
Принципы нейродинамики
М.: Мир, 1964
4.
Ф. Уоссерман
Нейрокомпьютерная техника
М.: Мир, 1992
5.
Ф.В.Широков
Введение в нейрокомпьютинг
ИНФРА-М. Электронное издание. 1995
6.
Arbib M., ed
The Handbook of Brain Theory and Neural Networks
MIT Press, 1995
7.
А.Н.Горбань
Обучение нейронных сетей
М: СП Параграф, 1990
8.
А.Н.Горбань, Д.А.Россиев
Нейронные сети на персональном компьютере
Новосибирск. Наука, Сибирская издательская фирма РАН, 1996
9.
Ф.В. Широков
Нейросети на шине VME. Краткая история нейроинформатики
(1998). TANA ltd.
10.
Anderson, E, J. A. and Rosenfeld
Neurocomputing: Foundations of Research
The MIT Press, 1988
11.
A. and Rosenfeld. E, Anderson, J. A., Pellionisz
Neurocomputing 2: Directions for Research
The MIT Press, 1990
12.
Beltratti A., Margarita S., Terna P
Neural Networks for Economic and Financial Modeling
ITCP, 1995
13.
Bishop C.M
Neural Networks and Pattern Recognition
Oxford Press, 1995
14.
Haykin, S
Neural Networks, a Comprehensive Foundation
Macmillan, 1994
15.
Hecht-Nielsen. R
Neurocomputing
Addison-Wesley,1990
16.
Hopfield, J.J
Neural networks and physical systems with emergent collective computational abilities
Proc. Natl. Acad. Sci., 79, 2554-2558
17.
Hopfield, J.J
Neurons with graded response have collective computational properties like those of two-state neurons
Proc. Natl. Acad. Sci., 81, 3088-3092
18.
McCulloch, Pitts. W., W.S.
A logical calculus of the ideas immanent in nervous activity
Bulletin of Math. Bio., 5, 115-133
19.
A., C. and Pap. R, Harston, Maren
Handbook of Neural Computing Applications
Academic Press, 1990
20.
C, Mead
Analog VLSI and neural systems
Addison Wesley
21.
M. and Papert. S, Minsky
Perceptrons. MIT Press
Cambridge MA.
22.
B. and Reinhardt, J, М. Muller
Neural Networks, An Introduction. Springer-Verlag. 1990.Rosenblatt, F. (1969). Principles of Neurodynamics
Spartan Books, Washington DC, 1961
23.
Murray A.F
Applications of Neural Nets
Kluwer Academic Publishers, 1995
24.
Pao, Y. H
Adaptive Pattern Recognition and Neural Networks
Addison-Wesley, 1989
25.
and Wiliams, D.E., G.E., Hinton, R.J, Rumelhart
Learning internal representations by error propagation, in: McClelland, J. L. and Rumelhart, D. E. (Eds.). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1, 318-362
MIT Press, Cambridge MA
26.
Bishop C.M
Neural Networks and Pattern Recognition
Oxford Press. 1995
27.
Fausett, L.V
Fundamentals of Neural Networks: Architectures, Algorithms and Applications
Prentice Hall, 1994
28.
A., and Palmer, Hertz, J., Krogh, R
Introduction to the Theory of Neural Computation
Addison-Wesley, 1991
29.
Masters, T
Practical Neural Network Recipes in C++
Academic Press. 1994
30.
M. and Illingworth, McCord Nelson, W.T
A Practical Guide to Neural Nets
Addison-Wesley, 1990
31.
A.J., Bell, Sejnowsky, T.J
An information-maximization approach to Blind Separation and Blind Deconvolution
Neural Computation 7, 1129-1159
32.
Bishop, C.M
Neural Networks and Pattern Recognition
Oxford Press. 1995
33.
Deboeck, G. and Kohonen, T. (Eds)
Visual Explorations in Finance with Self-Organizing Maps
Springer, 1998
34.
D.O, Hebb
The Organization of Behavio
New York: Wiley
35.
A., and Palmer, Hertz, J., Krogh, R
Introduction to the Theory of Neural Computation
Addison-Wesley, 1991
36.
Kohonen, T
Self-organized formation of topologically correct feature maps
Biol. Cybernetics 43, 56-69
37.
Kohonen, T
Self-Organizing Maps. Springer, 1997 (2-nd edition)
38.
Linsker, R
Local synaptic learning rules suffice to maximize mutual information in linear network
Neural Computation 4, 691-702
39.
E, Oja
A simplified neuron model as a Principal Component Analyzer
Biology, 16, 267-273
40.
and Wangviwattana J, E., H., Ogawa, Oja
Learning in nonlinear constrained Hebbian networks, in Artificial Neural Networks (Proc. ICANN-91), T.Kohonen et al. (Eds.)
Amsterdam: North-Holland, 385-390
41.
Crick, F. & Mitchison G.
The function of dream sleep
Nature, 304, 111
42.
Diderich, M, S. & Opper
Learning of Correlated Patterns in Spin-Glass Networks by Local Learning Rules
Phys.Rev.Lett., 58, 949
43.
A., A. & Knizhnikova, Ezhov, Kalambet, L.A. (1990) ., Yu.
Neural networks: general properties and particular applications
Manchester, Manchester University Press, 39
44.
A., Ezhov
Empty classes, predictive and clustering thinking networks
Neural Network World, 4, 671
45.
A., A. & Vvedensky V.L, Ezhov
Object generation with neural networks (when spurious memories are useful)
Neural Networks, 9, 1491
46.
Hassoun M.H. ed
Associative Neural Memories: Theory and Implementation
Oxford, 1995
47.
Hopfield, J.
Neural Networks and Physical Systems with Emergent Collective Computational Abilities
Proc.Natl.Acad.Sci. USA, 79, 2554
48.
Hopfield, J, J.
Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons
Proc.Natl.Acad.Sci. USA, 81, 3088
49.
& Palmer, D., Feinstein, Hopfield, I., J., R.G
Unlearning has a stabilizing effect in collective memories
Nature, 304, 158
50.
Kinzel, W
Learning and pattern recognition in spin glass models
Z. Phys. B. Condensed Matter, 60, 205
51.
Kohonen, T
Self-organization and Associative Memory
Springer-Verlag, 1989
52.
& Strikland M., B., J, Muller, Reinhardt, T
Neural Networks. An Introduction. 2nd edition
Springer
53.
& Levchenko, A., B, E., Ezhov, Kamchatnov, Knizhnikova, L., M., Vedenov
Manchester, Manchester University Press, 169
54.
Кук, С
Обзор вычислительной сложности. Тьюринговская лекция в: Лекции лауреатов премии Тьюринга за первые двадцать лет 1966-1985
Мир. М:1993
55.
and Ignizio, Burke, J, L., L.., P
Neural networks and operations research: An overview
Computers and Operations Research, 19, 179
56.
A. and Unbehauen, Cichocki, R
Neural Networks for Optimization and Signal Processing
John Wiley & Sons, 1994
57.
B., Cooper, S
Higher order neural networks - can they help us optimise?
Proceedings of the Sixth Australian Conference on Neural Networks (ACNN'95) , 29
58.
B.S, Cooper
A comparison of the number of stable points of oprimisation networks
Univ. of Adelaide, Report CSSIP TR, 4/96
59.
and Gambardella, Dorigo, L., M, M.
Ant colonies for the traveling salesman problem
Technical Report, Universte Libre de Bruxelles - TR/IRIDIA/1996-3
60.
and Willshaw, D, Durbin, R.
An analogue approach to the travelling salesman problem using an elastic net method
Nature, 326, 689
61.
F. and Walker, Favata, R
A study of the application of Kohonen-type neural network to the travelling salesman problem
Biological cybernetics, 64, 463
62.
B. and Wilke, Fritzke, P
FLEXMAP - A neural network for the travelling salesman problem with linear time and space complexity
Proceddings of IJCNN-91, Singapore, 929
63.
D, Fogel
Applying evolutionary programming to selected traveling salesman problems. Cybernetics and Systems
An International Journal, 24, 27
64.
A., Gee, H
Problem solving with optimization networks
PhD thesis, University of Cambridge
65.
and Peterson, B., C, Gislen, L., Soderberg
Complex scheduling with Potts neural networks
Neural Computation, 4, 805
66.
and Peterson, B., C, Gislen, L., Soderberg
Teachers and classes with neural networks
International Journal of Neural Systems, 1, 167
67.
& Tank, D., Hopfield J., J., W
Neural computation of decisions in optimization problems
Biological Cybernetics, 52, 141
68.
B., Lin, S. & Kernigan, W
An effective heuristic algorithm for the travelling-salesman problem
Operations Research, 21, 498
69.
C, Looi
Neural networks methods in combinatorial optimization
Computers and Operations Research, 19, 191
70.
A., E., H., J, M., Metropolis, N., Rosenbluth, Teller, W.
J.Chem.Phys
21, 1087
71.
J, von Neumann
A certain zero-sum two-person game equivalent to the optimal assignment problem
Contributions to the Theory of Games II.H.W. Kahn and A.W. Tucker, Eds. Princeton Univ. Press, Princeton, NJ
72.
A, D., G. and Beyer, Ogier, R.
Neural network solution to the link scheduling problem using convex relaxation
Proceedings of the 1990 IEEE Global Telecommunications Conference, Dec.,1371
73.
and Soderberg, B, C., M., Ohlsson, Peterson
Neural networks for optimization problems with inequality constraints - the knapsack problem
Neural Computation, 5, 331
74.
B, G. and Soderberg, Peterson
A new method for mapping optimization problems onto neural networks
International Journal of Neural Systems, 1, 3
75.
J-Y, Potvin
The travelling salesman problem - A neural network perspective
ORSA Journal of Computing, 5, 328
76.
and Krishnamoorthy, K., M, Palaniswami. M., Smith
Traditional heuristic versus Hopfield neural network approaches to car sequencing problem
European Journal of Operational Research
77.
and Ignizio, J., P, S., Vaithyanathan
A stochastic neural network for resource constrained scheduling
Computers and Operations Research, 19, 241
78.
G., S, V. and Pawley, Wilson
On the stability of the Travelling Salesman Problem algorithm of Hopfield and Tank
Biological Cybernetics, 58, 63
79.
Bishop C.M
Neural Networks and Pattern Recognition
Oxford Press
80.
Rissanen J
Complexity of Models, in Complexity, Entropy and the Physics of Information
Ed. W.H.Zurek; Addison-Wesley, Redwood City, California, p. 117-125
81.
Александер Г.Дж., Бэйли, Дж. В, У.Ф., Шарп
Инвестиции
Инфра-М
82.
Abu-Mostafa, Y.S
Financial market applications of learning from hints
In Neural Networks in Capital Markets. Apostolos-Paul Refenes (Ed.), Wiley, 221-232
83.
A., and Terna, Beltratti, Margarita, P, S.
Neural Networks for Economic and Financial Modeling
ITCP
84.
Chorafas, D.N
Chaos Theory in the Financial Markets
Probus Publishing
85.
Colby, Meyers, R.W., T.A
The Encyclopedia of Technical Market Indicators
IRWIN Professional Publishing
86.
Ehlers, J.F
MESA and Trading Market Cycles
Wiley
87.
G, Kaiser
A Friendly Guide to Wavelets
Birk
88.
and Lucas, C., D.W, LeBeau
Technical traders guide to computer analysis of futures market
Business One Irwin
89.
E.E, Peters
Fractal Market Analysis
Wiley
90.
M.G, Pring
Technical Analysis Explained
McGraw Hill
91.
Plummer, T
Forecasting Financial Markets
Kogan Page
92.
and Casdagli, J.A., M, Sauer, T., Yorke
Embedology
Journal of Statistical Physics. 65, 579-616
93.
and Rogers, eds, R.D., V.R., Vemuri
Artificial Neural Networks. Forecasting Time Series
IEEE Comp.Soc.Press
94.
A and Gershenfield, eds, Weigend
Times series prediction: Forecasting the future and understanding the past
Addison-Wesley
95.
Бэстенс, В.-М., Ван Ден Берг, Вуд, Д, Д.-Э.
Нейронные сети и финансовые рынки. Принятие решений в торговых операциях
ТВП Научное издательство
96.
& Shavlik, Craven, J., M., W, W.
Extracting tree-structured representations of trained networks
In Touretzky, D., Mozer, M. and Hasselmo, M., eds. Advances in Neural Information Processing Systems (volume 8). MIT Press, Cambridge MA/
97.
Lu Hongjun, R. and Liu Huan, Setiono
NeuroRule: A connectionist approach to Data Mining
Proc.of the 21st VLDB Conference, Zurich, Swizerland
98.
A., G, S. and Zimmerman H., Weigend
ТВП Научное издательство
99.
A., and Neuneier, G., H., R, S., Weigend, Zimmermann
Clearning. In Neural Networks in Financial Engineering
World Scientific, Singapore
100.
Бэстенс, В.-М., Ван Ден Берг, Вуд, Д, Д.-Э.
Нейронные сети и финансовые рынки. Принятие решений в торговых операциях
ТВП Научное издательство
101.
Александер, Бейли, Г., Д, У., Шарп
5-е изд., пер. с англ. ИНФРА-М
102.
Altman, E. I
Financial ratios, Discriminant analysis and the prediction of corporate bankruptcy
Journal of Finance, 23, No 4, 589-609
103.
Altman, E. I.
Defaults and returns on high-yield bonds through thr first half of 1991
Financial Analyst Journal, 47, No 6. 74-75
104.
and Shekhar, Dutta, S, S.
Bond Rating: A Non-Conservative Application of Neural Networks
Proc. IEEE Int. Conf. on Neural Networks, pp.II443-II450
105.
Horrigan, J.O
The determination of long term credit standing with financial ratios
Empirical Research in Accounting: Selected Studies. Journal of Accounting Research
106.
J, J. and Utans, Moody
Architecture Selection Strategies for Neural Networks: Application to Corporate Bond Rating Prediction
in: Neural Networks in the Capital Markets, Apostolos-Paul Refenes Ed., John Wiley & Sons, 277-300
107.
A.V, and Yarovoy, S.A., Shumsky
Self-Organizing Atlas of Russian Banks
in: Deboeck, G. and Kohonen, T. (Eds). Visual Explorations in Finance with Self-Organizing Maps. Springer, 1998
108.
and Turban, E., eds, R., Trippi
Neural Networks in Finance and Investing
Probus Publishing
109.
R.R, West
An alternative approach predicting corporate bond ratings
Journal of Accounting Research, Spring 1970
110.
C.Couvrer and P.Couvrer
Neural Networks and Statistics: A Naive Comparison
Belgian Journal of Operations Research Statistics and Computer Sciences. 36, No 4, 1997
111.
J.Tucker
Probus Publishing
112.
W.S.Sarle
Neural Networks and Statistical Models
Proceedings of the Nineteenth Annual SAS Users Group International Conference, Cary, NC, SAS Institute, April 3-4, 1994, 1538-1550