Не могу найти требования по оформлению выпускной контрольной работы по курсу профессиональной переподготовки "Менеджмент предприятия" |
Устойчивость и эффективность поведения сторон: совместимость свойств устойчивости и эффективности
Устойчивость и эффективность решений
Использование в рассмотренном выше примере оценок гарантированной эффективности стратегий (по отношению к возможным значениям неопределенного состояния природы) привело к тому, что проблема выбора стратегий
( 3.1) |
Во-первых, игроки P1 и P2 не заинтересованы в отклонении от поведения, определяемого этими стратегиями, поскольку любые такие отклонения могут лишь уменьшить уровень полезности, гарантируемый им стратегиями
( 3.2) |
( 3.3) |
Определение 1.4 ( Равновесие по Нэшу ). Пара стратегий (x*,y*) из множества , удовлетворяющая неравенствам (3.3) для платежных функций Mi(x,y), i=1,2 некоторой игры вида (1.16), называется устойчивой стратегической точкой или стратегической точкой равновесия (по Нэшу1Нэш Джон (р.1928) - американский экономист, лауреат Нобелевской премии (1994). ) в этой игре.
Второе важное свойство решения (3.2) - невозможность улучшить гарантируемые этим решением уровни полезности (2.12) одновременно для обоих игроков. Таким образом, если свойство (3.3) устойчивости решения определяет отсутствие у каждой из сторон P1 и P2 каких-либо индивидуальных мотивов для смены поведения, то обсуждаемое второе свойство указывает на отсутствие стимулов для смены поведения, реализуемой на основе каких-либо взаимных договоренностей между сторонами. Т.е. решение (3.2) оказывается неулучшаемым для обеих сторон.
Определение 1.5 ( Оптимальность по ) Парето2Парето Вильфредо (1848--1923) - итальянский экономист и социолог . Стратегии (x*,y*), составляющие пару из множества , называются эффективным или оптимальным по Парето решением игры вида (1.16), если в указанном множестве не существует другой пары , такой, что соответствующие ей выигрыши Mi(x',y'), i=1,2, превышают платежи Mi(x*,y*), i=1,2, гарантируемые игрокам P1 и P2 стратегической парой (x*,y*). При этом указанное превышение должно быть строгим хотя бы для одной из сторон. Таким образом, стратегическая пара (x*,y*) является оптимальной по Парето, если она удовлетворяет условиям
( 3.4) |
Как уже было отмечено, в рамках описанной модели у игроков P1 и P2 нет ни индивидуальных, ни коллективных стимулов для отклонения от поведения, предписываемого эффективной парой стратегий (x*,y*), обладающей свойствами равновесия по Нэшу. В связи с этим, стратегические пары (x*,y*) из множества , обладающие указанными двумя свойствами, будем называть оптимальными решениями для игр вида (1.16). Следует, однако, заметить, что описанные выше свойства устойчивости и эффективности могут оказаться несовместимыми.