При прохождении теста 1 в нем оказались вопросы, который во-первых в 1 лекции не рассматривались, во-вторых, оказалось, что вопрос был рассмаотрен в самостоятельно работе №2. Это значит, что их нужно выполнить перед прохождением теста? или это ошибка? |
Новосибирский Государственный Университет
Опубликован: 20.08.2013 | Доступ: платный | Студентов: 24 / 1 | Длительность: 14:11:00
Темы: Программирование, Графика и дизайн
Специальности: Программист, Системный архитектор
Теги:
- 1.A threshold selection method from gray-level histogramIEEE Trans. Syst. Man Cybern. 9:62-66;1979
- 2.Компьютерное зрениеПер. с англ. — М.: БИНОМ. Лаборатория знаний, 2006.
- 3.Topological Structural Analysis of Digitized Binary Images by Border Following.CVGIP 30 1, pp 32-46 (1985)
- 4.A Computational Approach to Edge DetectionIEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698 (1986).
- 5.Good Features to TrackProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 593-600, June 1994.
- 6.Pattern Recognition and Machine LearningSpringer, 2006.
- 7.Random ForestsMachine Learning. 2001. V. 45, №. 1, P. 5–32.
- 8.Classification and Regression TreesWadsworth & Brooks, 1984.
- 9.Support-Vector NetworksMachine Learning. 1995. V. 20, № 3. P. 273–297.
- 10.Decision-Theoretic Generalization of Online Learning and an Application to BoostingComputer and System Sciences. Vol.55, 1997. – pp. 119-139.
- 11.Greedy Function Approximation: a Gradient Boosting Machine. Technical reportDept. of Statistics, Stanford University, 1999.
- 12.Stochastic Gradient Boosting. Technical report.Dept. of Statistics, Stanford University, 1999.
- 13.The Elements of Statistical Learning: Data Mining, Inference, and PredictionSpringer, 2001.
- 14.Machine LearningMcGraw Hill, 1997.
- 15.Some Studies in Machine Learning Using the Game of CheckersIBM Journal. V. 3, № 3. P. 210–229.
- 16.Fast algorithms for mining association rules in large databasesIn: Bocca JB, Jarke M, Zaniolo C (eds.) Proc. 20th Int. Conf. on Very Large Data Bases, VLDB'94, Morgan Kaufmann, 487-499.
- 17.Extensions of dynamic programming as a new tool for decision tree optimizationIn: Ramanna S, Howlett RJ, Jain LC (eds.) Emerging Paradigms in Machine Learning, Springer (to appear), 2011
- 18.On algorithm for building of optimal ?-decision trees.In: Szczuka MS, Kryszkiewicz M, Ramanna S, Jensen R, Hu Q (eds.) RSCTC 2010. LNCS, vol. 6086:438-445, Springer, Heidelberg.
- 19.Robust Vehicle Detection through Multidimensional Classification for On Broad Video Based SystemsIEEE. – 2007.
- 20.2D Object Detection and Recognition: models, algorithms and networksThe MIT Press, 2002. – 325p.
- 21.Support vector machines for multiple-instance learningAdvances in Neural Information Processing Systems, 2002. P. 561-568.
- 22.Machine Learning and Robot Perception.Springer, 2005.
- 23.Robust vehicle detection through multidimensional classification for on board video based systemsICIP, 2008. – pp. 2008-2011.
- 24.Detection and tracking of multiple pedestrians in automotive applicationsIntelligent Vehicles Symposium. 2007. – pp. 13-18.
- 25.Real-Time License Plate Recognition on an Embedded DSP-PlatformComputer Vision and Pattern Recognition, 2007.
- 26.Empirical comparison of tree ensemble variable importance measuresChemometrics and Intelligent Laboratory Systems. Vol.105. No.2, 2011. – pp. 157-170.
- 27.Computer VisionPrentice Hall Inc., 1982. – 539p.
- 28.An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and VariantsMach. Learn. 1999. V. 36, №. 1-2., P. 105-139.
- 29.SURF: speed up robust featuresComputer Vision and Image Understanding (CVIU), Vol.110, No.3, 2008. – pp. 346-359
- 30.Pedestrin localization and tracking system with Kalman filteringIntelligent Vehicles Symposium. 2004. - pp. 584-589
- 31.A modular tracking system for far infrared pedestrian recognitionIntelligent Vehicles Symposium. 2005. – pp. 759-764.
- 32.New algorithms for generation decision trees - Ant-Miner and its modificationsFoundations of Computational Intelligence 6:229-262.
- 33.Image classification using random forests and fernsIn 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007
- 34.Learning OpenCV Computer Vision with OpenCV LibraryO' Reilly Media Publishers, 2008. – 571p.
- 35.Random ForestsMach. Learn. 2001. V. 45, №. 1, P. 5-32.
- 36.Classification and Regression TreesWadsworth & Brooks, 1984.
- 37.BRIEF: Binary Robust Independent Elementary Features11th European Conference on Computer Vision (ECCV), 2010.
- 38.Algorithm for constructing of decision trees with minimal number of nodesIn: Ziarko W, Yao YY (eds.) RSCTC 2000, Revised Papers. LNCS, vol. 2005:139-143, Springer, Heidelberg.
- 39.Online learning algorithm for ensemble of decision rulesIn: Kuznetsov SO, \'Sl ezak D, Hepting DH, Mirkin BG (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743:310-313, Springer, Heidelberg.
- 40.Real-time tracking of non-rigid objects using mean shiftIEEE CVPR’2000, Vol.2, 2000. – pp. 142-149.
- 41.Histograms of oriented gradients for human detectionComputer Vision and Pattern Recognition (CVPR’05), 2005.
- 42.Visual categorization with bags of keypointsIn: ECCV International Workshop on Statistical Learning in Computer Vision, 2004.
- 43.Hierarchical Semantic Indexing for Large Scale Image RetrievalIEEE Computer Vision and Pattern Recognition (CVPR) – 2011.
- 44.What does classifying more than 10,000 image categories tell us?Proceedings of the 12th European Conference of Computer Vision (ECCV) – 2010.
- 45.ImageNet: A large-scale hierarchical image databaseIn CVPR09. – 2009.
- 46.The fastest pedestrian detector in the westMachine Vision. 2010.
- 47.Pedestrian Detection: An Evaluation of the State of the ArtPattern Analysis and Machine Intelligence (PAMI’11). 2011.
- 48.On some new object detection features in OpenCV LibraryPattern Recognition and Image Analysis. 2011. V. 21, № 2. P. 377–379.
- 49.Pattern classification (2nd edition).Wiley, 2001
- 50.Monocular Pedestrian Detection: Survey and ExperimentsIEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, V. 31, N. 12, P. 2179-2195.
- 51.Grant Statistical Methods in Bioinformatics: An IntroductionSpringer, 2005.
- 52.Fast and robust CAMShift trackingIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2010. – pp. 9-16.
- 53.WordNet: An Electronic Lexical DatabaseMIT Press, 1998.
- 54.Object Detection with Discriminatively Trained Part Based ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. Vol.32, No.9. – pp. 1627–1645.
- 55.Cascade object detection with deformable path modelComputer Vision and Pattern Recognition (CVPR'10). 2010.
- 56.Cited 2 July 2011.
- 57.Real-time stereo vision for urban traffic scene understandingIntelligent Vehicles Symposium. 2000. – pp. 273-278.
- 58.The design and use of steerable filtersIEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.13, No.9, 1991. – pp. 891-906.
- 59.A decision-theoretic generalization of online learning and an application to boosting// Computer and System Sciences. Vol.55, 1997. – pp. 119-139.
- 60.Greedy function approximation: the gradient boosting machine// Annals of Statistics. 2001. V. 29, N. 5. P. 1189-1232.
- 61.Greedy Function Approximation: a Gradient Boosting Machine. Technical reportDept. of Statistics, Stanford University, 1999.
- 62.Stochastic Gradient Boosting. Technical report.Dept. of Statistics, Stanford University, 1999.
- 63.Importance Sampled Learning Ensembles// Technical report. Dept. of Statistics, Stanford University, 2003.
- 64.Vision-based pedestrian detection: the protector system// Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy. – 2004. – pp. 13-18.
- 65.Pedestrian detection from a moving vehicleComputer Vision. Vol.2. 2000. – pp. 37-49.
- 66.A Global Approach to Vision Based Pedestrian Detection for Advanced Driver Assistance Systems, PhD ThesisComputer Vision Center Barcelona, February 2010.
- 67.Pyramid match kernels: Discriminative classification with sets of image featuresIn Proc. ICCV, 2005.
- 68.3D vision sensing for improved pedestrian safety// Intelligent Vehicles Symposium. 2004. – pp. 19-24.
- 69.The Minimum Description Length PrincipleForeword by Jorma Rissanen. Adaptive Computation and Machine Learning. MIT Press.
- 70.The Elements of Statistical Learning: Data Mining, Inference, and PredictionSpringer, 2001.
- 71.Pyramidal Image Analysis for Vehicle DetectionProceedings to Intelligent Vehicles Symposium, 2005. – pp. 88-93.
- 72.Robust Extraction of Wheel Region for Vehicle Position Estimation using a Circular Fisheye CameraInternational Journal of Computer Science and Network Security, Vol.9, No.12. – 2009.
- 73.Determing Optical FlowMIT Artificial Intelligence Laboratory, №572. – 1980.
- 74.Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approachesIEEE Transactions on Knowledge and Data Engineering 16:1457-1471.
- 75.Real-time tracking and outlier rejection with changes in illuminationICCV’01, Vol.1, 2001. – pp. 684-689.
- 76.Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Second EditionPrentice Hall, 2008.
- 77.Forward-backward error: automatic detection of tracking failuresICPR’10, 2010. – pp. 2756-2759.
- 78.Vehicle Segmentation and Tracking from a Low-Angle Off-Axis CameraProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, June 2005. – 2005.
- 79.PCA-SIFT: A more distinctive representation for local image descriptorsComputer Vision and Pattern Recognition (CVPR’04), Vol.2, 2004. – pp. 506-513.
- 80.Saul Distance Metric Learning for Large Margin Nearest Neighbor ClassificationJMLR. 2009 V. 10 P. 207-244.
- 81.Wavelet-based Vehicle Tracking for Automatic Traffic SurveillanceIEEE Catalogue No.01CH37239. – 2001.
- 82.Beyond bags of features: Spatial pyramid matching for recognizing natural scene categoriesIn: CVPR, 2006.
- 83.Real-time pedestrian and vehicle detection in video using 3D cuesICME’09 Proceedings of the 2009 IEEE international conference on Multimedia and Expo. – 2009. – pp. 614-617.
- 84.Dynamic 3D scene analysis from a moving vehicleComputer Vision and Pattern Recognition (CVPR’07). 2007. – pp. 1-8.
- 85.Robust Object Detection with Interleaved Object Categoization and SegmentationSpringler Science + Business Media, LLC. – 2007.
- 86.Measuring the semantic relatedness between words and imagesInternational Conference on Computational Semantics (IWCS) – 2011.
- 87.Classification rule discovery with ant colony optimizationIn: Proc. IEEE/WIC Int. Conf. on Intelligent Agent Technology, IAT 2003, IEEE Computer Society, Washington, DC, 83-88.
- 88.Distinctive image features from scale-invariant keypointsIJCV 60, P. 91–110, 2004.
- 89.An iterative image registration technique with an application to stereo visionIJCAI’81, Vol.2, 1981. – pp. 674-679.
- 90.Robust wide baseline stereo from maximally stable extremal regionsBritish Machine Learning Conference, 2002. – pp. 384-393.
- 91.iAQ: A program that discovers rules, AAAI-07 AI Video CompetitionIn: 22nd AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada.
- 92.A Performance Evaluation of Local DescriptorsIEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No.10, 2005. – pp. 1615-1630.
- 93.Scale and affine invariant interest point detectorsInternational Journal of Computer Vision, 60(1), 2004. – pp. 63-86.
- 94.Machine LearningMcGraw-Hill Science/Engineering/Math, 1997.
- 95.On algorithm for constructing of decision trees with minimal depthFundamenta Informaticae 41:295-299.
- 96.Partial Covers, Reducts and Decision Rules in Rough Sets: Theory and Applications.Studies in Computational Intelligence, vol. 145. Springer, Heidelberg.
- 97.Combinatorial Machine Learning: A Rough Set ApproachStudies in Computational Intelligence, vol. 360. Springer, Heidelberg.
- 98.An experimental study on pedestrian classificationIEEE Pattern Analysis and Machine Intelligence (PAMI’06).Vol.28, No.11, 2006. pp. 1863-1868
- 99.Exploiting Hierarchical Contex on a large database of object categoriesIEEE Computer Vision and Pattern Recognition (CVPR’10). 2010. – pp. 129-136.
- 100.Efficient Non-Maximum SupressionInternational Conference on Pattern Recognition, 2006. – pp. 850-855.
- 101.Approximate Boolean reasoning: foundations and applications in data miningIn: Peters JF, Skowron A (eds.), Transactions on Rough Sets V. LNCS, vol. 4100:334-506, Springer, Heidelberg.
- 102.PLANET: Massively parallel learning of tree ensembles with MapReduceProceedings of the 35th International Conference on Very Large Data Base (VLDB). 2009. P. 1426-1437.
- 103.Multiple instance boost using graph embedding based decision stump for pedestrian detectionComputer Vision. Vol.4, 2008. - pp. 541-552.
- 104.A trainable system for object detectionComputer Vision. Vol.38. No.1, 2000. – pp. 15-33
- 105.Rough Sets – Theoretical Aspects of Reasoning about DataKluwer Academic Publishers, Dordrecht.
- 106.Rough sets and Boolean reasoning.Information Sciences 177: 41-73.
- 107.Face Recognition for Smart EnvironmentsIEEE Computer Vision. – 2000. – pp. 50-55.
- 108.Induction of decision treesMachine Learning 1, 1986. – pp. 81-106.
- 109.C4.5: Programs for Machine LearningMorgan Kaufmann Publishers, San Mateo.
- 110.Modeling by shortest data description.Automatica 14:465-471.
- 111.Machine Learning for high-speed corner detection9th European Conference on Computer Vision (ECCV 2006), 2006. – pp. 430-443.
- 112.Detecting pedestrians by learning shapelet featuresComputer Vision and Pattern Recognition (CVPR’07). 2007.
- 113.The boosting approach to machine learning. An overviewMSRI workshop on Nonlinear Estimation and Classification. Springer, 2002.
- 114.Good features to trackIEEE, 1994. – pp. 593-600
- 115.Contour-based Learning for Object Detection10th IEEE International Conference on Computer Vision (ICCV’05). 2005. Vol.1. – P. 503-510
- 116.Rough sets in KDDIn: Shi Z, Faltings B, Musem M. (eds.) 16th World Computer Congress. Proc. Conf. Intelligent Information Processing, 1-17. Publishing House of Electronic Industry, Beijing.
- 117.The discernibility matrices and functions in information systemsIn: Slowinski R (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, Kluwer Academic Publishers, Dordrecht, 331-362.
- 118.rder-based genetic algorithms for the search of approximate entropy reductsIn: Wang G, Liu Q, Yao Y, Skowron A (eds.) Proc. 9th Int. Conf. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2003. LNAI, vol. 2639:308-311, Springer, Heidelberg.
- 119.Image Processing, Analysis and Machine VisionThomson, 2008. – 866p.
- 120.Computer Vision: Algorithms and ApplicationsSpringler, 2010. – 979p.
- 121.Robust Vehicle Detection for Tracking in Highway Surveillance Videos using unsupervised LearningAdvanced Video and Signal Based Surveillance (AVSS '09), 2009. – pp.529-534.
- 122.A Fast Local Descriptor for Dense MatchingIEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), 2008. – pp. 1-8.
- 123.Contex-based Vision System for Place and Object Recognition9th IEEE International Conference on Computer Vision (ICCV’03). 2003. Vol.1. – pp. 273-283.
- 124.Local Invariant Feature Detectors: A SurveyFoundation and Trends in Computer Vision, Vol.3, No. 3, 2007. – pp. 177-280.
- 125.Parallel boosted regression trees for web search rankingProceedings of the 20th international conference on World wide web. 2011. P. 387-396.
- 126.Vehicle Tracking Using a Human-Vision-Based Model of Visual SimilarityIEEE. – 2010.
- 127.Detecting pedestrians using patterns of motion and appearanceComputer Vision. Vol.63. No.2, 2005. – pp. 153-161.
- 128.Rapid object detection using a boosted cascade of simple featuresIn Proceedings IEEE Conf. on Computer Vision and Pattern Recognition. – 2001.
- 129.Robust Real-Time Face Detectioninternational Journal of Computer Vision 57(2). – 2004. – pp. 137-154.
- 130.Detecting pedestrians using patterns of motion and appearanceIn: Proceedings of the 9th International Conference on Computer Vision (ICCV), Vol. 1 – 2003. – pp. 734-741.
- 131.New features and insights for pedestrian detectionComputer Vision and Pattern Recognition (CVPR'10). 2010.
- 132.Statistical and Inductive Inference by Minimum Message Length.Information Science and Statistics. Springer, New York.
- 133.A performance evaluation of single and multi-feature people detectionDAGM-Symposium. 2008. – pp.82-91.
- 134.Multi-cue onboard pedestrian detectionComputer Vision and Pattern Recognition (CVPR'09). 2009. – pp. 794 - 801.
- 135.Finding minimal reducts using genetic algorithm.In: Proc. 2nd Annual Join Conf. on Information Sciences, Wrightsville Beach, NC, 186-189.
- 136.Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectorsComputer Vision. Vol.75. No.2, 2007. – pp. 247-266.
- 137.Logistic regression and boosting for labeled bags of instancesKnowledge Discovery and Data Mining (KDDM’04), 2004.
- 138.High Performance Data Mining: Scaling Algorithms, Applications and SystemsKluwer Academic Publishers, 1999.
- 139.Pedestrian detection in infrared images based on local shape featuresComputer Vision and Pattern Recognition (CVPR’07). 2007.
- 140.On-road vehicle detection using Gabor filters and support vector machinesDigital Signal Processing,Vol.2, 2002.- pp. 1019-1022.
- 141.Fast Human Detection Using a Cascade of Histograms of Oriented GradientsComputer Vision and Pattern Recognition (CVPR’06). Vol.2, 2006. – pp. 1491-1498.
- 142.Optimization of decision rules based on methods of dynamic programmingVestnik of Lobachevsky State University of Nizhni Novgorod 6:195-200 (in Russian)
- 143.Теория распознавания образов. Статистические проблемы обучения.М.: Наука, 1974.
- 144.Параллельная реализация алгоритма предсказания с помощью модели градиентного бустинга деревьев решенийВестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование. 2011. No. 37 (254). С. 82-89.
- 145.Программная реализация алгоритма градиентного бустинга деревьев решенийВестник ННГУ, вып. 1, 2011. С. 193-200.
- 146.Новые математические подходы к задачам медицинской диагностикиМ.: УРСС, 2004.
- 147.Компьютерное зрение. Современный подход.М.: Изд. д. Вильямс, 2004. – 465с.
- 148.Data Mining: учебное пособиеМ.: Интернет-университет информационных технологий: БИНОМ: Лаборатория знаний, 2006.
- 149.A sparse object category model for efficient learning and exhaustive recognition.In IEEE Computer Society Conference onComputer Vision and Pattern Recognition (CVPR’2005), pp. 380–387, San Diego, CA
- 150.Object Class Recognition by Unsupervised Scale-Invariant LearningIn Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2003, V.2, pp. 264-271
- 151.Spatial priors for part-based recognition using statistical modelsIn IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2005), pp. 10–17, San Diego, CA.
- 152.Pictorial structures for object recognitionInternational Journal of Computer Vision, 61(1):55–79.
- 153.Visual categorization with bags of keypointsIn ECCV International Workshop on Statistical Learning in Computer Vision, Prague
- 154.Hierarchical part-based visual object categorizationIn IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2005), pp. 709–714, San Diego, CA.
- 155.Sparse flexible models of local featuresIn Ninth European Conference on Computer Vision (ECCV 2006), pp. 29–43
- 156.Pattern Recognition and Machine Learning.Springer, New York, NY.
- 157.The representation and matching of pictorial structures.IEEE Transactions on Computers, 22(1):67–92.
- 158.Discriminative Object Class Models of Appearance and Shape by Correlatons.In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), New York, 2006.
- 159.A hierarchical model of shape and appearance for human action classificationIn: Proc. CVPR (2007)
- 166.
- 167.
- 169.
- 170.
- 172.
- 182.Learning OpenCVO’Reilly, 2008. – 571p
- 199.Robust Real-Time Face Detectioninternational Journal of Computer Vision 57(2). – 2004. – pp. 137-154.
- 200.Object Detection with Discriminatively Trained Part Based ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. Vol.32, No.9. – pp. 1627–1645.
- 201.Компьютерное зрение. Современный подходМ.: Изд. д. Вильямс, 2004. – 465с.
- 202.Topological Structural Analysis of Digitized Binary Images by Border FollowingCVGIP 30 1. – 1985. – pp. 32-46.
- 203.Компьютерное зрение.М.: Бином. Лаборатория знаний, 2006. – 752с.
- 204.On the detection of dominant points on digital curvesIEEE Transactions on Pattern Analysis and Machine Intelligence. – Vol. II No. 8. – 1989. – pp. 859-872.
- 205.Learning OpenCV Computer Vision with OpenCV LibraryO' Reilly Media Publishers, 2008. 571p.
- 206.Компьютерное зрение.М.: Бином. Лаборатория знаний, 2006. 752с.
- 207.Компьютерное зрение. Современный подходМ.: Изд. д. Вильямс, 2004. 465с.
- 208.A computational approach to edge detectionIEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. PAMI-8. No.6. 1986. P.679-698.
- 213.
- 217.The Elements of Statistical Learning: Data Mining, Inference, and PredictionSpringer, 2001.
- 218.Classification and Regression TreesWadsworth & Brooks, 1984.
- 219.New object detection features in the OpenCV LibraryPattern Recognition and Image Analysis. 2011. V. 21, № 3. P. 384–386.
- 220.Random ForestsMachine Learning 2001. V. 45, № 1. P. 5–32.
- 221.k-means++: the advantages of careful seedingProceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2007. P. 1027–1035.
- 224.Censure: Center surround extremas for realtime feature detection and matchingIn European Conference on Computer Vision (ECCV 2008), pp. 102–115.
- 225.SURF: speed up robust featuresComputer Vision and Image Understanding (CVIU). 2008. V.110, № 3. P. 346-359.
- 226.Learning OpenCV Computer Vision with OpenCV LibraryO' Reilly Media Publishers, 2008. 571p.
- 227.BRIEF: Binary Robust Independent Elementary FeaturesIn Proceedings of the 11th European Conference on Computer Vision (ECCV’10). 2010.
- 228.The Elements of Statistical Learning.Springer, 2008.
- 229.PCA-SIFT: A more distinctive representation for local image descriptorsIn Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’04). 2004. V.2. P. 506-513.
- 230.Feature detection with automatic scale selectionInternational Journal of Computer Vision. 1998. V.30. Issue 2.
- 231.Distinctive image features from scale-invariant keypointsInternational Journal of Computer Vision. 2004. № 60. P. 91–110.
- 232.Robust wide baseline stereo from maximally stable extremal regionsBritish Machine Learning Conference. 2002. P. 384-393.
- 233.Scale and affine invariant interest point detectorsInternational Journal of Computer Vision. 2004. № 60(1). P. 63-86.
- 234.Machine Learning for high-speed corner detectionIn Proceedings of the 9th European Conference on Computer Vision (ECCV’06). 2006. P. 430-443.
- 235.ORB: an efficient alternative to SIFT or SURFIn Proceedings of the International Conference on Computer Vision (CVPR’11). 2011. P. 2564-2571
- 236.Computer Vision: Algorithms and Applications.Springler, 2010. 979p.
- 244.Компьютерное зрениеМ.: Бином. Лаборатория знаний. 2006. 752с.
- 245.Image Processing, Analysis and Machine VisionThomson. 2008. 866p.
- 246.Reference Manual, Volume 2: Image and Video Processing
- 254.Алгоритмы. Построение и анализ.М.: МЦНМО, 2001.
- 255.Техника оптимизации программ. Эффективное использование памяти.BHV, 2003.
- 256.
- 257.
- 258.3-е изд. – СПб.: Питер, 2007.
- 259.–Morgan Kaufmann, 2006.
- 260.М.: Изд. д. Вильямс, 2004. – 465с.
- 261.Springer, 2010.
- 262.Материалы образовательного комплекса «Параллельные численные методы». – Нижний Новгород, 2010.
- 263.М.: Изд. д. Вильямс, 2004. – 465с.
- 264.–Morgan Kaufmann, 2006.
- 265.3-е изд. – СПб.: Питер, 2007.
- 267.
- 268.Matrix Multiplication via Arithmetic ProgressionsJ. Symbolic Computation, 9(3). – P. 251–280, 1990.
- 269.IntelPress, 2004.