математический анализ |
Математический анализ: Информация
Автор: Дмитрий Кирьянов
Форма обучения:
дистанционная
Стоимость самостоятельного обучения:
бесплатно
Доступ:
свободный
Документ об окончании:
Вам нравится? Нравится 17 студентам
Уровень:
Для всех
Длительность:
9:51:00
Студентов:
898
Выпускников:
2
Курс по математическому анализу для студентов компьютерных специальностей.
Вещественные числа. Предел числовой последовательности. Предел и непрерывность функции одной переменной. Дифференцирование функций одной переменной. Интегрирование функций одной переменной. Исследование функции и построение её графика. Определённый интеграл Римана. Приложения и приближённые вычисления интеграла Римана. Предел последовательности в En и предел функции нескольких переменных. Дифференцирование функций нескольких переменных. Неявные функции, зависимость и независимость функций. Локальный экстремум (условный и безусловный) функции нескольких переменных. Числовые ряды. Бесконечные произведения, двойные и повторные ряды.
Темы: Математика
План занятий
Глава <<
Занятие
Заголовок <<
Дата изучения
Глава 1 <<
Введение
Предмет математического анализа
Вводная лекция содержит приветствие автора курса и информацию об общей направленности курса, включая акцент на "живые" практические занятия в Mathcad. Автор подчеркивает, что курс относится к математическому анализу функции одной переменной и включает основы дифференциального и интегрального исчисления.
Оглавление
-
Уравнение прямой на плоскости
Лекция посвящена основам аналитической геометрии: рассматривается уравнение прямой на плоскости, вводится понятие наклона прямой. Обсуждаются уравнения параллельных и перпендикулярных прямых.
Оглавление
-
Графики на плоскости - секущая и касательная
Рассматривается задача построения секущей через две точки графика некоторой функции. Обсуждается понятие касательной к графику, как предельного значения секущих, проходящих через две близкие точки графика.
Оглавление
-
Пример построения касательной
Приводится пример отыскания секущей и касательной для графика квадратичной функции.
Оглавление
-
Глава 2 <<
Производная функции
Производная функции в точке. Вычисление наклона касательной
Вводится определение производной функции в точке. Обсуждается равенство значения производной функции в точке наклону касательной к графику функции в этой точке. Выписывается уравнение касательной.
Оглавление
-
Пример вычисления производной функции f(x)=x^2
Приводится пример вычисления производной функции f(x)=x^2+b в точке х=а (согласно определению производной, как предела). Обсуждается независимость производной от добавления к функции константы.
Оглавление
-
Правая и левая производная
Вводится определение правой и левой производных функции в точке, как правого и левого предела, соответственно. Приводится пример расчета правой и левой производных для кусочно-непрерывной функции.
Оглавление
-
Недифференцируемые функции* Пример: функция Вейерштрасса
Лекция вводит понятие дифференциала, при помощи которого определяется дифференцируемость функций. Приводится пример всюду непрерывной, но нигде недифференцируемой функции Вейерштрасса.
Оглавление
-
Производная функции с физической точки зрения
Приводится несколько физических примеров применения производной: расчет скорости и ускорения для объекта, свободно падающего в поле тяжести.
Оглавление
-
Глава 3 <<
Предел функции
Понятие предела
В упрощенном варианте вводится понятие предела функции в точке. Обсуждается математический смысл предела (на примере серии графиков функции во все более мелком масштабе). Приводится пример вычисления предела функции в точке, в которой функция не определена.
Оглавление
-
Правила вычисления пределов
Рассматриваются правила определения пределов: предел суммы, разности, произведения, частного, а также предел сложной функции.
Оглавление
-
Примеры вычисления пределов
Рассматривается решение нескольких задач по нахождению пределов (от степенной функции, полинома, рациональной дроби).
Оглавление
-
Лемма о сэндвиче
Доказывается "лемма о сэндвиче", которая будет использоваться для вычисления нескольких пределов, имеющих ключевое значение.
Оглавление
-
Бесконечные пределы
В заключительной лекции главы рассматривается вычисление бесконечных пределов.
Оглавление
-
Глава 4 <<
Непрерывность функций
Непрерывность функций
Дается определение непрерывности функции в точке, на интервале, на сегменте. Приводится несколько примеров непрерывных и разрывных функций. Подчеркивается, что для непрерывности функции в точке необходимо выполнение трех условий: существование функции в точке, предела функции в этой точке, и их
Оглавление
-
Классификация точек разрыва
Приводится несколько примеров разрывных функций и дается классификация точек разрыва: устранимые разрывы, разрывы 1-го и 2-го рода (в англоязычной литературе – removable, jump, infinite, essential).
Оглавление
-
Связь дифференцируемости и непрерывности
Доказывается теорема о непрерывности функции, дифференцируемой на интервале. Приводится пример неверности обратного утверждения.
Оглавление
-
Примеры
Обсуждается несколько примеров непрерывных и разрывных функций. Решаются типовые задачи, связанные с непрерывностью и классификацией точек разрыва.
Оглавление
-
Глава 5 <<
Правила дифференцирования
Простейшие правила дифференцирования
Лекция посвящена простейшим правилам: вычисление производной функции-константы, произведения функции на константу, а также суммы и разности двух функций.
Оглавление
-
Дифференцирование произведения и отношения
При помощи определения производной функции выводятся формулы дифференцирования произведения и отношения двух функций.
Оглавление
-
Производная полинома
Пользуясь выведенными простейшими правилами дифференцирования, несложно получить формулы для вычисления производной степенной функции (с положительным и отрицательным целым показателем степени), а также полиномов.
Оглавление
-
Производные тригонометрических функций
Рассматривается вопрос вычисления производных базовых тригонометрических функций (sin, cos). При помощи полученных результатов вычисляются производная тангенса.
Оглавление
-
Примеры
Рассматривается несколько примеров вычисления производных на основе доказанных правил дифференцирования (полинома, произведения, отношения, тригонометрических функций).
Оглавление
-
Глава 6 <<
Дифференцирование сложных и неявных функций
Дифференцирование сложной функции
Рассматривается вычисление производной сложной функций, называемое в англоязычной литературе "chain rule" ("правило цепочки"). Приводится несколько примеров.
Оглавление
-
Вторая производная. Производные высших порядков.
Вводится понятие второй производной функции (как производной от ее первой производной). Аналогично, определяются и производные высших порядков (3-я, 4-я и т.д.). Обсуждается графический смысл 2-й производной (связь с выпуклостью графика)
Оглавление
-
Примеры
Приводится несколько примеров на применение правила дифференцирования сложной функции и вычисления производных высших порядков. В частности, рассматриваются задачи на дифференцирование тригонометрических функций и физические примеры вычисления скорости и ускорения.
Оглавление
-
Пример: вычисление скорости и ускорения
Вводится понятие неявной функции и основная идея вычисления производной неявной функции. В качестве примера неявной функции приводится петля Декарта x^3 + y^3 = 3axy.
Оглавление
-
Глава 7 <<
Дифференцирование различных функций
Экспоненциальная функция
Рассматривается задача вычисления производной показательной функции f(x)=ax. Отыскивается значение показателя a=e=2.7, при котором производная равна самой функции f(x)=f’(x)=ex. Обсуждается другой вид определения числа e (через соответствующий предел).
Оглавление
-
Дифференцирование показательной функции
На основе свойств производной экспоненциальной функции решается задача дифференцирования показательной функции f(x)=ax с произвольным показателем a.
Оглавление
-
Дифференцирование гиперболических функций
екция посвящена дифференцированию функций, образованных от экспоненциальной: логарифмических и гиперболических. Вводятся понятия натурального логарифма, sinh, cosh, th. Вычисляется производная обратной функции.
Оглавление
-
Пример
Рассматриваются несколько примеров вычисления производных некоторых комбинаций экспоненциальной, логарифмической и гиперболических функций.
Оглавление
-
Глава 8 <<
Аппроксимация функций
Линейная аппроксимация
На основе определения производной решается задача приближения (или, по-другому, аппроксимации) функции f(x) линейной функцией y=ax+b в точке. В качестве прямой линии, приближающей в точке х=а график f(x) берется касательная к графику f(x) в точке а. На нескольких примерах исследуется, насколько близко линейное приближение к функции f(x).
Оглавление
-
О разложении функции в ряд
Качественно рассматривается более общая задача - приближение функции f(x) в некоторой точке а степенным рядом. Приводится несколько примеров и оцениваются погрешности.
Оглавление
-
Квадратичная аппроксимация
Рассматривается задача аппроксимации функции f(x) квадратичной функцией y=ax^2+bх+с в точке а. Устанавливается связь между коэффициентами a, b, c и значениями первой и второй производной.
Оглавление
-
Численное дифференцирование
Рассматривается разностное вычисление производной функции в точке при помощи линейной аппроксимации. Анализируются сопутствующие ошибки округления. Аналогично строится разностное выражение для 2-й производной.
Оглавление
-
Глава 9 <<
Исследование графиков функций
Максимум и минимум функции
Лекция посвящена исследованию графиков функций на монотонность и отыскание локальных максимума и минимума, выпуклости и точек перегиба графика.
Оглавление
-
Связь экстремума с 1-й производной
Устанавливается связь точек экстремума функции f(x) с поведением ее 1-й производной f'(х). Функция f(x) имеет экстремум (максимум или минимум) в точке a, если в этой точке f'(a)=0.
Оглавление
-
Теорема о наибольшем значении
Обсуждается теорема о наибольшем значении (EVT, теорема Вейерштрасса), говорящая об ограниченности непрерывной функции на сегменте (закрытом интервале) и о достижении функцией наибольшего (и наименьшего) значения на этом сегменте.
Оглавление
-
Связь особых точек со 2-й производной
Рассматривается связь поведения 2-й производной функции f''(х) с выпуклостью графика f(x). Показывается, что f''(х)=0 в точках перегиба функции. Устанавливается критерий отыскания точек максимума и минимума функции по значениям первой и второй производной f' (a) и f''(a).
Оглавление
-
Глава 10 <<
Теоремы о функциях, непрерывных на интервале
Теорема Ролля
Обсуждается теорема Ролля, говорящая о том, что производная функции f(x), непрерывной и дифференцируемой на закрытом интервале (сегменте [a,b]), хотя бы один раз обращается в ноль внутри сегмента при условии f(a)=f(b).
Оглавление
-
Теорема о среднем значении (MVT)
Лекция посвящена теореме Вейерштрасса о среднем значении (mean value theorem). Она утверждает, что для функции f(x), непрерывной и дифференцируемой на сегменте [a,b], в некоторой точке сегмента выполнено соотношение: f(b)-f(a)=f'(c)(b-a).
Оглавление
-
Особые точки функции
Лекция резюмирует основные шаги исследования графика функции: 1. Поиск особых точек и значения функции в особых точках; 2. Исследование знака 1-й производной f'(х) между особыми точках. 3. Отыскание нулей функции f(x); 4. Поведение функции f(x) на бесконечности; 5. Поведение функции f(x) вблизи точек, в которых она не определена.
Оглавление
-
Пример: полное исследование полиномиальной функции
В качестве иллюстрации приводится полное исследование функции (на примере полинома): отыскание нулей и особых точек, для которых затем диагностируется достижение максимума и минимума (по значениям первой и второй производной).
Оглавление
-
Глава 11 <<
Неопределенный интеграл
Антипроизводная функции
Обсуждается процедура "анти-дифференцирования" (обратная дифференцированию функции) и вводится понятие антипроизводной. На основании теоремы о среднем значении показывается, что для данной функции существует бесконечное число антипроизводных, отличающихся друг от друга на константу.
Оглавление
-
Неопределенный интеграл: основные понятия
Вводятся начальные понятия интегрального исчисления: первообразная (то же, что антипроизводная), неопределенный интеграл, подынтегральная функция, интегрирование по переменной. Приводятся примеры вычисления неопределенного интеграла.
Оглавление
-
Правила интегрирования
На основе известных правил дифференцирования выводятся соответствующие правила интегрирования. Указывается, что далеко не все элементарные функции удается проинтегрировать аналитически. В частности, отмечается, что не существует формулы для вычисления интеграла от произведения функций.
Оглавление
-
Примеры
Приводится несколько примеров вычисления неопределенных интегралов на основе выведенных правил интегрирования и общих соображений.
Оглавление
-
Интегрирование подстановкой
Представлена техника вычисления неопределенных интегралов при помощи подстановки (через вспомогательную переменную). Подстановка основана на применении аналога формулы дифференцирования сложной функции.
Оглавление
-
Глава 12 <<
Дифференциальные уравнения
Дифференциал
Вводится понятие дифференциала функции. Иллюстрируется связь дифференциала и 1-й производной. Приводится пример практического применения дифференциала.
Оглавление
-
Дифференциальные уравнения
Лекция посвящена введению в обыкновенные дифференциальные уравнения. Рассматривается постановка задачи Коши, общее и частное решение дифференциального уравнения. Приводится несколько примеров численного решения дифференциальных уравнений.
Оглавление
-
Метод разделения переменных
Приводится геометрическая интерпретация решения дифференциальных уравнений. Объясняются методы конечных разностей и разделения переменных.
Оглавление
-
Примеры: линейное движение
В качестве примеров решения дифференциальных уравнений приводится решение уравнений одномерного движения объекта в поле тяжести.Раскрывается смысл начального условия.
Оглавление
-
Глава 13 <<
Определенный интеграл
Интегральная сумма
Обсуждаются пути решения второй основной задачи математического анализа: вычисление площади под графиком. Вводится понятие интегральных сумм (Римана): левой, правой, верхней, нижней, и определенного интеграла, как их предела.
Оглавление
-
Определенный интеграл
Дается определение определенного интеграла, как предела Римановой суммы. Приводится несколько примеров вычисления определенного интеграла (с одной стороны, геометрически, как площади фигуры; и с другой – путем вычисления пределов интегральных сумм).
Оглавление
-
Определенный интеграл: замечания
Приводится несколько важных замечаний, связанных с понятием определенного интеграла. Обсуждаются некоторые свойства определенного интеграла.
Оглавление
-
Расчет определенного интеграла
На основе введенного определения для квадратичной функции производится построение интегральной суммы и последующий расчет определенного интеграла (как предела интегральной суммы).
Оглавление
-
Глава 14 <<
Основные формулы интегрального исчисления
1-я фундаментальная теорема мат.анализа
Обсуждается введенная ранее основная формула интегрального исчисления (формула Ньютона-Лейбница вычисления определенного интеграла), которая формулируется в виде "1-й фундаментальная теорема математического анализа".
Оглавление
-
Интеграл с переменным верхним пределом
Дается определение интеграла с переменным верхним (нижним) пределом. Считается его производная по переменной верхнего предела. Обсуждается разница между переменной интегрирования и переменной верхнего предела.
Оглавление
-
Фундаментальные теоремы мат.анализа (вывод)
На основе использования интеграла с переменным верхним пределом выводятся обе фундаментальные теоремы математического анализа. Доказывается, что (первообразной) подынтегральной функции является интеграл с переменным верхним пределом.
Оглавление
-
2-я фундаментальная теорема мат.анализа
Формулируется 2-я фундаментальная теорема, утверждающая, что производная интеграла с переменным верхним пределом является равна подынтегральной функции. Предлагается простой алгоритм расчета определенного интеграла через вычисление неопределенного интеграла.
Оглавление
-
Глава 15 <<
Применение определенных интегралов
Определение логарифма и экспоненты
На основании 2-й фундаментальной теоремы предлагается переопределение логарифмической функции, как интеграла с переменным верхним пределом от функции 1/х. Исследуется график введенной функции. Через логарифм определяется число е и экспоненциальная функция.
Оглавление
-
Вычисление площади фигуры
Согласно определению определенного интеграла рассчитывается площадь плоской фигуры, ограниченная двумя кривыми. Для вычисления точек пересечения кривых применяется численное решение нелинейного уравнения.
Оглавление
-
Вычисление объема при помощи сечений
Рассматривается метод расчета объема тел посредством разбиения на параллельные сечения и последующего интегрирования. Приводится пример применения определенного интеграла для вычисления объема конуса и шара.
Оглавление
-
Вычисление объема тела вращения
Приводится пример применения вычисления определенного интеграла для вычисления объема тела вращения (конуса). Метод обобщается на вращение произвольной функции f(x) вокруг оси x. Обсуждается возможность вычисления площади тела вращения.
Оглавление
-
Глава 16 <<
Методы вычисления определенных интегралов
Интегрирование подстановкой
В качестве первого приема вычисления определенного интеграла рассматривается метод расчет неопределенного интеграла при помощи подстановки (через вспомогательную переменную).
Оглавление
-
Интегрирование по частям
Рассматривается метод вычисления определенного интеграла "по частям", обоснованием которого служит правило дифференцирования произведения двух функций. Приводятся примеры расчета интеграла "по частям".
Оглавление
-
Численное интегрирование
Обсуждается основная идея приближенного (численного) расчета определенного интеграла, согласно его определению. Для расчета площади соответствующей плоской фигуры применяются методы прямоугольников, трапеций и Симсона. Приводится оценка погрешности численного интегрирования.
Оглавление
-
Несобственные интегралы
Вводится понятие несобственного интеграл. В частности, интегрирование в бесконечных пределах определяется, как двойной предел, к которому сходятся интегральные суммы при стремлении предела к бесконечности. Приводятся примеры сходящихся и расходящихся несобственных интегралов.
Оглавление
-
Глава 17 <<
Вычисление средних значений
Глава 18 <<
Функции, заданные параметрически. Полярные координаты
Глава 19 <<
Неопределённости
Глава 20 <<
Бесконечные последовательности и ряды
Глава 21 <<
Разложение в ряд Тейлора