Язык программирования C++ |
Производные классы, наследование
Такая ситуация складывается довольно часто в объектно-ориентированном программировании. (Вспомните пример с различными формами в графическом редакторе: рисование некой обобщенной формы невозможно.) В подобных случаях используется механизм абстрактных классов. Запишем базовый класс Item немного по-другому:
class Item { public: . . . virtual String Name() const = 0; };
Теперь мы определили метод Name как чисто виртуальный. Класс, у которого есть хотя бы один чисто виртуальный метод, называется абстрактным .
Если метод объявлен чисто виртуальным, значит, он должен быть определен во всех классах, производных от Item. Наличие чисто виртуального метода запрещает создание объекта типа Item. В программе можно использовать указатели или ссылки на тип Item. Записи
Item it; Item* itptr = new Item;
не разрешены, и компилятор сообщит об ошибке. Однако можно записать:
Book b; Item* itptr = &b; Item& itref = b;
Отметим, что, определив чисто виртуальный метод в классе Book, в следующем уровне наследования его уже не обязательно переопределять (в классах, производных из Book ).
Если по каким-либо причинам в производном классе чисто виртуальный метод не определен, то этот класс тоже будет абстрактным, и любые попытки создать объект данного класса будут вызывать ошибку. Таким образом, забыть определить чисто виртуальный метод просто невозможно. Абстрактный базовый класс навязывает определенный интерфейс всем производным из него классам. Собственно, в этом и состоит главное назначение абстрактных классов – в определении интерфейса для всей иерархии классов. Разумеется, это не означает, что в абстрактном классе не может быть определенных методов или атрибутов.
Вообще говоря, класс можно сделать абстрактным, даже если все его методы определены. Иногда это необходимо сделать для того, чтобы быть уверенным в том, что объект данного класса никогда не будет создан. Можно задать один из методов как чисто виртуальный, но, тем не менее, определить его реализацию. Обычно для этих целей выбирается деструктор:
class A { public: virtual ~A() = 0; }; A::~A() { . . . }
Класс A – абстрактный, и объект типа A создать невозможно. Однако деструктор его определен и будет вызван при уничтожении объектов производных классов (о порядке выполнения конструкторов и деструкторов см. ниже).
Множественное наследование
В языке Си++ имеется возможность в качестве базовых задать несколько классов. В таком случае производный класс наследует методы и атрибуты всех его родителей. Пример иерархии классов в случае множественного наследования приведен на следующем рисунке.
В данном случае класс C наследует двум классам, A и B.
Множественное наследование – мощное средство языка. Приведем некоторые примеры использования множественного наследования.
Предположим, имеющуюся библиотечную систему решено установить в университете и интегрировать с другой системой учета преподавателей и студентов. В библиотечной системе имеются классы, описывающие читателей и работников библиотеки. В системе учета кадров существуют классы, хранящие информацию о преподавателях и студентах. Используя множественное наследование, можно создать классы студентов-читателей, преподавателей-читателей и студентов, подрабатывающих библиотекарями.
В графическом редакторе для некоторых фигур может быть предусмотрен пояснительный текст. При этом все алгоритмы форматирования и печати пояснений работают с классом Annotation. Тогда те фигуры, которые могут содержать пояснение, будут представлены классами, производными от двух базовых классов:
class Annotation { public: String GetText(void); private: String annotation; }; class Shape { public: virtual void Draw(void); }; class AnnotatedSquare : public Shape, public Annotation { public: virtual void Draw(); };
У объекта класса AnnotatedSquare имеется метод GetText, унаследованный от класса Annotation, он определяет виртуальный метод Draw, унаследованный от класса Shape.
При применении множественного наследования возникает ряд проблем. Первая из них – возможный конфликт имен методов или атрибутов нескольких базовых классов.
class A { public: void fun(); int a; }; class B { public: int fun(); int a; }; class C : public A, public B { };
При записи
C* cp = new C; cp->fun();
невозможно определить, к какому из двух методов fun происходит обращение. Ситуация называется неоднозначной, и компилятор выдаст ошибку. Заметим, что ошибка выдается не при определении класса C, в котором заложена возможность возникновения неоднозначной ситуации, а лишь при попытке вызова метода fun.
Неоднозначность можно разрешить, явно указав, к которому из базовых классов происходит обращение:
cp->A::fun();
Вторая проблема заключается в возможности многократного включения базового класса. В упомянутом выше примере интеграции библиотечной системы и системы кадров вполне вероятна ситуация, при которой классы для работников библиотеки и для студентов были выведены из одного и того же базового класса Person:
class Person { public: String name(); }; class Student : public Person { . . . }; class Librarian : public Person { . . . };
Если теперь создать класс для представления студентов, подрабатывающих в библиотеке
class StudentLibrarian : public Student, public Librarian { };
то объект данного класса будет содержать объект базового класса Person дважды (см. рисунок 10.3).
Кроме того, что подобная ситуация отражает нерациональное использование памяти, никаких неудобств в данном случае она не вызывает. Возможную неоднозначность можно разрешить, явно указав класс:
StudentLibrarian* sp; // ошибка – неоднозначное обращение, // непонятно, к какому именно экземпляру // типа Person обращаться sp->Person::name(); // правильное обращение sp->Student::Person::name();
Тем не менее, иногда необходимо, чтобы объект базового класса содержался в производном один раз. Для этих целей применяется виртуальное наследование, речь о котором впереди.
Виртуальное наследование
Базовый класс можно объявить виртуальным базовым классом, используя запись:
class Student : virtual Person { }; class Librarian : virtual Person { };
Гарантировано, что объект виртуального базового класса будет содержаться в объекте выведенного класса (см. рисунок 10.4) один раз. Платой за виртуальность базового класса являются дополнительные накладные расходы при обращениях к его атрибутам и методам наследования.