Россия |
Анализ потоков данных
Анализ потоков данных
Под анализом потоков данных понимают совокупность задач, нацеленных на выяснение некоторых глобальных свойств программы, то есть извлечение информации о поведении тех или иных конструкций в некотором контексте. Такая постановка задачи возможна по той причине, что язык программирования и вычислительная среда определяют некоторую общую, "безопасную" семантику конструкций, которая годится "на все случаи жизни". Учет же контекстных условий позволяет делать более конкретные, частные заключения о поведении той или иной конструкции; при этом такие заключения, вообще говоря, перестают быть верными в другом контексте. Например, общая семантика присваивания заключается в вычислении выражения, стоящего в правой части, и присваивании полученного значения в переменную, стоящую в левой части. Однако в случае, когда выражение в правой части не имеет побочных эффектов, а переменная в левой части более нигде не используется, данный оператор становится эквивалентен пустому.
Для того чтобы описать понятие контекста, снова обратимся к графу потока управления (см. "Оптимизация" и "Анализ потока управления" ). Понятно, что на смысл каждой конструкции может оказывать влияние любая конструкция, из которой в этом графе достижима данная. Отсюда следует, что для правильного учета контекста необходимо учесть влияние всех путей до данной вершины, сначала определив влияние каждого пути, а затем выделив общую часть. Задача осложняется тем, что при наличии контуров множество всех путей в графе управления становится бесконечным.
Далее в этой лекции будет рассмотрен общепринятый итеративный подход, который позволяет получить приближенное решение задач анализа потоков данных, а при определенных условиях это решение становится точным.
Пример
Для демонстрации сути задач анализа потоков данных рассмотрим несколько примеров.
На иллюстрации приведен фрагмент программы. Вхождения одного и того же выражения (v+i)->b, обведенные сплошной линией, являются эквивалентными. В то же время вхождение того же самого выражения, обозначенное пунктирной линией, не эквивалентно первым двум, поскольку else -часть условного оператора содержит разрушающее присваивание.
Понятно, что для выяснения эквивалентности данных выражений необходимо перебрать все пути и убедиться, что ни в одном из них значения переменных, входящих в выражения, не меняются.