Опубликован: 15.06.2007 | Уровень: специалист | Доступ: платный
Лекция 10:

Машинная эволюция

< Лекция 9 || Лекция 10: 123 || Лекция 11 >
Аннотация: Лекция рассматривает различные методы поиска решений, такие, как метод перебора (и способы ускорения его работы), метод группового учета аргументов (МГУА), а также генетический алгоритм и синтез технических решений.

Метод перебора как наиболее универсальный метод поиска решений. Методы ускорения перебора

Как Вы уже знаете, существуют задачи, для которых доказано отсутствие общего алгоритма решения (например, задача о разрешимости Диофантова множества). В то же время можно сказать, что, если бы мы обладали бесконечным запасом времени и соответствующими ресурсами, то мы могли бы найти решение любой задачи. Здесь имеется в виду не конструирование нового знания на основании имеющегося (вывод новых теорем из аксиом и уже выведенных теорем), а, прежде всего, "тупой" перебор вариантов.

Еще в XVII столетии великий Лейбниц пытался раскрыть тайну "Всеобщего Искусства Изобретения". Он утверждал, что одной из двух частей этого искусства является комбинаторика — перебор постепенно усложняющихся комбинаций исходных данных. Второй частью является эвристика — свойство догадки человека. И сейчас вторая часть Искусства Изобретения все еще остается нераскрытой. На языке нашего времени эта часть — модель мышления человека, включающая в себя процессы генерации эвристик (догадок, изобретений, открытий).

Однако прежде чем перейти к рассмотрению улучшенных переборных алгоритмов (улучшенных потому, что для простого перебора у нас в запасе нет вечности), я бы отметил еще один универсальный метод ускорения перебора — быстрое отсечение ложных (или вероятно ложных, что и используется большинством алгоритмов) ветвей перебора.

Эволюция

Прежде всего, упомяну, что отнюдь не все ученые признают наличие эволюции. Многие религиозные течения (например, свидетели Иеговы) считают учение об эволюции живой природы ошибочным. Я не хочу сейчас вдаваться в полемику относительно доказательств за и против по одной простой причине. Даже если я не прав в своих взглядах, объясняя эволюционные алгоритмы как аналоги процессов, происходящих в живой природе, никто не сможет сказать, что эти алгоритмы неверны. Несмотря ни на что, они находят огромное применение в современной науке и технике и показывают подчас просто поразительные результаты.

Основные принципы эволюционной теории заложил Чарльз Дарвин в своей самой революционной работе — "Происхождение видов". Самым важным его выводом был вывод об основной направляющей силе эволюции — ею признавался естественный отбор. Другими словами — выживает сильнейший (в широком смысле этого слова). Забегая вперед, замечу, что любой эволюционный алгоритм имеет такой шаг, как выделение самых сильных (полезных) особей. Вторым, не менее важным выводом Дарвина был вывод об изменчивости организмов. Аналогом данного закона у всех алгоритмов является шаг генерации новых экземпляров искомых объектов (решений, структур, особей, алгоритмов).

Именно отбор наилучших объектов является ключевой эвристикой всех эволюционных методов, позволяющих зачастую уменьшить время поиска решения на несколько порядков по сравнению со случайным поиском. Если попытаться выразить эту эвристику на естественном языке, то скажем: сложно получить самое лучшее решение, модифицируя плохое. Скорее всего, оно получится из нескольких лучших на данный момент.

Из основных особенностей эволюционных алгоритмов можно отметить их некоторую сложность в плане настройки основных параметров (вырождение, либо неустойчивость решения). Поэтому, экспериментируя с ними и получив не очень хорошие результаты, попробуйте не объявлять сразу алгоритм неподходящим, а попытаться опробовать его при других настройках. Данный недостаток следует из основной эвристики — можно "уничтожить" предка самого лучшего решения, если сделать селекцию слишком "жесткой" (не зря ведь биологам давно известно, что если осталось меньше десятка особей исчезающего вида, то этот вид сам по себе исчезнет из-за вырождения).

МГУА

Описанный в разделе алгоритмов распознавания образов метод группового учета аргументов так же относится к разряду эволюционных. Его можно представить как следующий цикл:

  1. Берем самый последний слой классификаторов.
  2. Генерируем из них по определенным правилам новый слой классификаторов (которые теперь сами становятся последним слоем).
  3. Отбираем из них F лучших, где F — ширина отбора (селекции).
  4. Если не выполняется условие прекращения селекции (наступление вырождения – инцухта), переходим на п. 1.
  5. Самый лучший классификатор объявляется искомым решением задачи идентификации.

Как мы видим, налицо все признаки эволюционного алгоритма — отбор (селекция) и генерация нового поколения.

Генетический алгоритм (ГА)

Генетический алгоритм является самым известным на данный момент представителем эволюционных алгоритмов, и по своей сути является алгоритмом для нахождения глобального экстремума многоэкстремальной функции. ГА представляет собой модель размножения живых организмов.

Для начала представим себе целевую функцию от многих переменных, у которой необходимо найти глобальных максимум или минимум:

f(x1, x2, x3, …, xN)

Чтобы ГА заработал, нам необходимо представить независимые переменные в виде хромосом. Как это делается?

Как создать хромосомы?

Первым Вашим шагом будет преобразование независимых переменных в хромосомы, которые будут содержать всю необходимую информацию о каждой создаваемой особи. Имеется два варианта кодирования параметров:

  • в двоичном формате;
  • в формате с плавающей запятой.

В случае если мы применяем двоичное кодирование, мы используем N бит для каждого параметра, причем N может быть различным для каждого параметра. Если параметр может изменяться между минимальным значением MIN и максимальным MAX, возьмем следующие формулы для преобразования:

r = g*(MAX – MIN) / (2^N – 1) + MIN.

g = (r – MIN) / (MAX – MIN) * (2^N – 1)

где g – целочисленные двоичные гены, r – эквивалент генов в формате с плавающей запятой.

Хромосомы в формате с плавающей запятой создаются при помощи размещения закодированных параметров один за другим.

Если сравнивать эти два способа представления, то лучшие результаты дает вариант представления в двоичном формате (особенно при использовании кодов Грея). Правда, в этом случае мы вынуждены мириться с постоянным кодированием/декодированием параметров.

Как работает генетический алгоритм?

В общем, генетический алгоритм работает следующим образом. В первом поколении все хромосомы генерируются случайно. Определяется их "полезность". Начиная с этой точки, ГА может начинать генерировать новую популяцию. Обычно размер популяции постоянен.

Репродукция состоит из четырех шагов:

  • селекции

    и трех генетических операторов (порядок применения не важен)

  • кроссовера;
  • мутации;
  • инверсии.

Роль и значение селекции мы уже рассмотрели в обзоре эволюционных алгоритмов.

Кроссовер является наиболее важным генетическим оператором. Он генерирует новую хромосому, объединяя генетический материал двух родительских. Существует несколько вариантов кроссовера. Наиболее простым является одноточечный. В этом варианте просто берутся две хромосомы и перерезаются в случайно выбранной точке. Результирующая хромосома получается из начала одной и конца другой родительских хромосом.

001100101110010|11000 --------> 00110010111001011100
110101101101000|11100

Мутация представляет собой случайное изменение хромосомы (обычно простым изменением состояния одного из битов на противоположное). Данный оператор позволяет более быстро находить ГА локальные экстремумы, с одной стороны, и "перескочить" на другой локальный экстремум — с другой.

00110010111001011000 --------> 00110010111001111000

Инверсия инвертирует (изменяет) порядок бит в хромосоме путем циклической перестановки (случайное количество раз). Многие модификации ГА обходятся без данного генетического оператора.

00110010111001011000 --------> 11000001100101110010

Очень важно понять, за счет чего ГА на несколько порядков превосходит по быстроте случайный поиск во многих задачах. Дело здесь, видимо, в том, что большинство систем имеют довольно независимые подсистемы. Вследствие этого, при обмене генетическим материалом часто может встретиться ситуация, когда от каждого из родителей берутся гены, соответствующие наиболее удачному варианту определенной подсистемы (остальные "уродцы" постепенно вымирают). Другими словами, ГА позволяет накапливать удачные решения для систем, состоящих из относительно независимых подсистем (таковы большинство современных сложных технических систем и все известные живые организмы). Соответственно, можно предсказать, и когда ГА скорее всего даст сбой (или, по крайней мере, не покажет особых преимуществ перед методом Монте-Карло) — в системах, которые сложно разбить на подсистемы (узлы, модули), а также в случае неудачного порядка расположения генов (рядом расположены параметры, относящиеся к различным подсистемам), при котором преимущества обмена генетическим материалом сводятся к нулю. Последнее замечание несколько ослабляется в системах с диплоидным (двойным) генетическим набором.

Эволюционное (генетическое) программирование

Данные, которые закодированы в генотипе, могут представлять собой команды какой-либо виртуальной машины. В таком случае мы говорим об эволюционном или генетическом программировании. В простейшей ситуации мы можем ничего не менять в генетическом алгоритме. Однако при этом длина получаемой последовательности действий (программы) получается не отличающейся от той (или тех), которую мы поместили как затравку. Современные алгоритмы генетического программирования распространяют ГА для систем с переменной длиной генотипа.

< Лекция 9 || Лекция 10: 123 || Лекция 11 >
Сергей Пчеляков
Сергей Пчеляков

Добрый день!

В курсе "Проектирование систем искусственного интеллекта" начал проходить обучение и сдал тесты по лекциям 1,2,3,4. Но видимо из-за того что не записался на курс, после того как записался на курс у меня затерлись результаты сданных тестов. Можно как-то исправить (восстановить результаты по тестам 1,2,3,4) ?

Виктор Рубцов
Виктор Рубцов
Никита Тищенко
Никита Тищенко
Россия
Александр Смирнов
Александр Смирнов
Россия, Ульяновск, Ульяновский государственный педагогический университет имени И.Н.Ульянова, 1993