Опубликован: 01.06.2007 | Уровень: специалист | Доступ: платный | ВУЗ: Московский государственный университет путей сообщения

Лекция 14: Нейросетевые модели пошаговой оптимизации, маршрутизации и тактических игр

< Лекция 13 || Лекция 14: 12345 || Лекция 15 >
Аннотация: Рассматривается применение технологии логических нейронных сетей при построении транспортных моделей, в которых реализуется пошаговая маршрутизация. Общность подхода для решения класса задач пошаговой оптимизации демонстрируется на возможном применении в моделях тактических игр.

"Будут игры беспредельные,

В упоительности цельные…"

К. Бальмонт. "Будут игры беспредельные..."

14.1. Логическая нейронная сеть - средство пошагового принятия решений

Задачи пошаговой оптимизации составляют широкий класс задач исследования операций. Минимизация (максимизация) значения критериальной функции достигается в результате выполнения нескольких последовательных шагов обработки исходных данных. Это - многочисленные задачи нахождения оптимальных стратегий управления, таких как вывод космического объекта в заданную точку, минимизация длины пути следования в транспортной сети и др. Как правило, такие задачи решаются методами динамического программирования, требующими обратного и прямого проходов. Однако схему решения задачи линейного программирования, а также транспортной задачи, также можно свести к схеме пошаговой оптимизации, если она отображает процесс параллельного или последовательного смещения в соседнюю вершину многогранника допустимых решений, с меньшим значением целевой функции.

То же можно сказать о решении задачи целочисленного линейного программирования (особенно - параллельного) и многих задач нелинейного программирования, а также задач, решаемых методом "ветвей и границ".

Однако высокая сложность задач указанного типа выдвигает проблему запоминания и использования опыта, т.е. применения элементов обучения.

При решении задач оперативного управления и планирования, по-видимому, нецелесообразно каждый раз, например, прокладывать маршрут следования груза по железной дороге с учетом огромного числа динамически возникающих факторов. Конечно, пользуются простыми эвристическими алгоритмами управления, достаточно детализированными и децентрализованными для возможности учета постоянно изменяющихся условий и обстановки.

В то же время пошаговая оптимизация примитивно вырождается в последовательно принимаемое решение вида "я нахожусь в состоянии Х ; куда двигаться (что делать) дальше?" Такая простая схема движения к оптимуму и порождает возможность априорного расчета оптимальных стратегий изменения состояния системы, для того чтобы в рабочем режиме по параметрам целевой функции и по текущему состоянию системы находить запомнившийся предпочтительный переход в соседнее состояние, уменьшающий значение целевой функции.

В терминах динамического программирования это означает, что обратный проход - первый акт решения задачи - может быть выполнен заранее, вне рабочего режима системы управления. На его основе происходит обучение системы. В рабочем режиме по текущим исходным данным и по промежуточному состоянию системы определяется ее целесообразный, заранее обоснованный переход в следующее промежуточное или конечное состояние. Это - прямой проход.

Такая схема соответствует и идее ситуационного управления, и рассмотренной ранее схеме нейросетевой реализации управления.

К стратегии пошаговой оптимизации следует отнести и тактические игры, заключающиеся в последовательном выполнении противниками (преимущественно, двумя) действий, приводящих к минимизации некоторой целевой функции, например функции потерь. Здесь перед отдельным игроком стоит проблема выбора наилучшего хода для сложившейся ситуации.

Для этого, несомненно, могут каждый раз рассчитываться все возможные варианты ходов с возможными ответными ходами. Может быть использован и теоретический опыт. Однако такой анализ требует огромной производительности вычислительных средств. Он недостаточно оперативен.

Здесь решение находится на основе анализа действий опытного игрока, помнящего эффективный выход из множества сложившихся ситуаций и эксплуатирующего свои способности ассоциативного мышления. Используется и коллективный опыт, теоретически обобщенный.

Автоматизация подобного анализа может быть произведена на основе разработки "подсказчика", хранящего в памяти большое количество ситуаций и рекомендующего следующий ход в соответствии с опытом экспертов, с историей и с теоретическим анализом.

Все сказанное выше определяет целесообразность реализации с помощью логической нейронной сети.

< Лекция 13 || Лекция 14: 12345 || Лекция 15 >
Эльвира Герейханова
Эльвира Герейханова

Раньше это можно было зделать просто нажав на тест и посмотреть результаты а сейчас никак

Елена Лобынцева
Елена Лобынцева
Помогите разобраться как можно подобрать НС для распознавания внутренней области выпуклого многоугольника?
Дмитрий Степанов
Дмитрий Степанов
Россия, Москва, МГТУ им. Баумана, 2006
Дмитрий Степаненко
Дмитрий Степаненко
Россия