Опубликован: 16.10.2006 | Уровень: для всех | Доступ: платный | ВУЗ: Национальный исследовательский ядерный университет «МИФИ»
Лекция 3:

Простейшие логические элементы

< Лекция 2 || Лекция 3: 123456 || Лекция 4 >
Аннотация: В лекции рассматриваются принципы работы, характеристики и типовые схемы включения простейших логических элементов — инверторов, буферов, элементов И и ИЛИ, а также приводятся схемотехнические решения, позволяющие реализовать на их основе часто встречающиеся функции.

Изучение базовых элементов цифровой электроники мы начнем с наиболее простых, а затем будем рассматривать все более сложные. Примеры применения каждого следующего элемента будут опираться на все элементы, рассмотренные ранее. Таким образом, будут постепенно даны главные принципы построения довольно сложных цифровых устройств.

Логические элементы (или, как их еще называют, вентили, "gates") — это наиболее простые цифровые микросхемы. Именно в этой простоте и состоит их отличие от других микросхем. Как правило, в одном корпусе микросхемы может располагаться от одного до шести одинаковых логических элементов. Иногда в одном корпусе могут располагаться и разные логические элементы.

Обычно каждый логический элемент имеет несколько входов (от одного до двенадцати) и один выход. При этом связь между выходным сигналом и входными сигналами (таблица истинности) предельно проста. Каждой комбинации входных сигналов элемента соответствует уровень нуля или единицы на его выходе. Никакой внутренней памяти у логических элементов нет, поэтому они относятся к группе так называемых комбинационных микросхем. Но в отличие от более сложных комбинационных микросхем, рассматриваемых в следующей лекции, логические элементы имеют входы, которые не могут быть разделены на группы, различающиеся по выполняемым ими функциям.

Главные достоинства логических элементов, по сравнению с другими цифровыми микросхемами, — это их высокое быстродействие (малые времена задержек), а также малая потребляемая мощность (малый ток потребления). Поэтому в тех случаях, когда требуемую функцию можно реализовать исключительно на логических элементах, всегда имеет смысл проанализировать этот вариант. Недостаток же их состоит в том, что на их основе довольно трудно реализовать сколько-нибудь сложные функции. Поэтому чаще всего логические элементы используются только в качестве дополнения к более сложным, к более "умным" микросхемам. И любой разработчик обычно стремится использовать их как можно меньше и как можно реже. Существует даже мнение, что мастерство разработчика обратно пропорционально количеству используемых им логических элементов. Однако это верно далеко не всегда.

Инверторы

Самый простой логический элемент — это инвертор (логический элемент НЕ, "inverter"), уже упоминавшийся в "Базовые понятия цифровой электроники" . Инвертор выполняет простейшую логическую функцию — инвертирование, то есть изменение уровня входного сигнала на противоположный. Он имеет всего один вход и один выход. Выход инвертора может быть типа 2С или типа ОК. На рис. 3.1 показаны условные обозначения инвертора, принятые у нас и за рубежом, а в табл. 3.1 представлена таблица истинности инвертора.

Условные обозначения инверторов: зарубежные (слева) и отечественные (справа)

Рис. 3.1. Условные обозначения инверторов: зарубежные (слева) и отечественные (справа)

В одном корпусе микросхемы обычно бывает шесть инверторов. Отечественное обозначение микросхем инверторов — "ЛН". Примеры: КР1533ЛН1 (SN74ALS04) — шесть инверторов с выходом 2С, КР1533ЛН2 (SN74ALS05) — шесть инверторов с выходом ОК. Существуют также инверторы с выходом ОК и с повышенным выходным током (ЛН4), а также с повышенным выходным напряжением (ЛН3, ЛН5). Для инверторов с выходом ОК необходимо включение выходного нагрузочного резистора pull-up. Его минимальную величину можно рассчитать очень просто: R < U/IOL, где U — напряжение питания, к которому подключается резистор. Обычно величина резистора выбирается порядка сотен Ом — единиц кОм.

Таблица 3.1. Таблица истинности инвертора
Вход Выход
0 1
1 0

Две основные области применения инверторов — это изменение полярности сигнала и изменение полярности фронта сигнала (рис. 3.2). То есть из положительного входного сигнала инвертор делает отрицательный выходной сигнал и наоборот, а из положительного фронта входного сигнала — отрицательный фронт выходного сигнала и наоборот. Еще одно важное применение инвертора — буферирование сигнала (с инверсией), то есть увеличение нагрузочной способности сигнала. Это бывает нужно в том случае, когда какой-то сигнал надо подать на много входов, а выходной ток источника сигнала недостаточен.

Инверсия полярности сигнала и инверсия полярности фронта сигнала

Рис. 3.2. Инверсия полярности сигнала и инверсия полярности фронта сигнала
< Лекция 2 || Лекция 3: 123456 || Лекция 4 >
Александр Зотов
Александр Зотов
Россия
Марина Сухова
Марина Сухова
Россия, Москва