В уравнениях движения кривошипно-шатунного механизма вместо обозначения радиуса кривошипа "r" ошибочно записан символ "γ" (гамма). P.S. Может быть это слишком очевидно, но не упомянуто, что угол поворота кривошипа φ считается малым. |
Компьютерное моделирование при обработке опытных данных
Интерполяция по Ньютону
Дана табличная функция:
или
( 11.1) |
Точки с координатами (xi, yi) называются узловыми точками или узлами.
Количество узлов в табличной функции равно
N=n+1.
Необходимо найти значение этой функции в промежуточной точке, например, x=D, причем .
Для решения задачи строим интерполяционный многочлен.
Интерполяционный многочлен по формуле Ньютона имеет вид:
( 11.7) |
где
n - степень многочлена,
- разделенные разности 0-го, 1-го, 2-го,:., n-го порядка, соответственно.
Разделенные разности
Значения f(x0), f(x1), : , f(xn), т.е. значения табличной функции в узлах, называются разделенными разностями нулевого порядка (k=0).
Отношение называется разделенной разностью первого порядка (k=1) на участке [x0, x1] и равно разности разделенных разностей нулевого порядка на концах участка [x0, x1], разделенной на длину этого участка.
Для произвольного участка [xi, xi+1] разделенная разность первого порядка (k=1) равна
Отношение называется разделенной разностью второго порядка (k=2) на участке [x0, x2] и равно разности разделенных разностей первого порядка, разделенной на длину участка [x0, x2].
Для произвольного участка [xi, xi+2] разделенная разность второго порядка (k=2) равна
Таким образом, разделенная разность k -го порядка на участке [xi, xi+k] может быть определена через разделенные разности (k-1) -го порядка по рекуррентной формуле:
( 11.8) |
где
n - степень многочлена.
Максимальное значение k равно n. Тогда i =0 и разделенная разность n -го порядка на участке [x0,xn] равна , т.е. равна разности разделенных разностей (n-1) -го порядка, разделенной на длину участка [x0,xn].
Разделенные разности являются вполне определенными числами, поэтому выражение (11.7) действительно является алгебраическим многочленом n -й степени. При этом в многочлене (11.7) все разделенные разности определены для участков [x0, x0+k], .
Лемма: алгебраический многочлен (11.7), построенный по формулам Ньютона, действительно является интерполяционным многочленом, т.е. значение многочлена в узловых точках равно значению табличной функции
Докажем это. Пусть х=х0, тогда многочлен (11.7) равен
Пусть х=х1, тогда многочлен (11.7) равен
Пусть х=х2, тогда многочлен (11.7) равен
Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции yi, i=0,1,:n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (11.7). Это удобно на практике и ускоряет процесс вычислений.